Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Collins, A L; Pulley, S; Foster, Ian D L; Gellis, A; Porto, P; Horowitz, A J (2016)
Publisher: Elsevier
Journal: Journal of Environmental Management
Languages: English
Types: Article
Subjects: GB1201, Management, Monitoring, Policy and Law, Waste Management and Disposal, Environmental Engineering, QE571, GE300
The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting,\ud several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting,\ud namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alewell, C., Birkholz, A., Meusburger, K., Schindler Wildhaber, Y., Mabit, M., 2016. Quantitative sediment source attribution with compound-specific isotope analysis in a C3-lant dominated catchment (central Switzerland). Biogeosciences 13, 1587e1597.
    • Allan, R.J., 1986. The Role of Particulate Matter in the Fate of Contaminants in Aquatic Ecosystems. Inland Waters Directorate, Environment Canada Scientific Series No. 142, Burlington, Ontario, Canada,128 pp.
    • Barthod, L.R.M., Liu, K., Lobb, D.A., Owens, P.N., Martinez-Carreras, N., Koiter, A.J., Petticrew, E.L., McCullough, G.K., Liu, C., Gaspar, L., 2015. Selecting color-based tracers and classifying sediment sources in the assessment of sediment dynamics using sediment source fingerprinting. J. Environ. Qual. 44, 1605e1616.
    • Belmont, P., Willenbring, J.K., Schottler, S.P., Marquard, J., Kumarasamy, K., Hemmis, J.M., 2014. Toward generalizable sediment fingerprinting with tracers that are conservative and nonconservative over sediment routing timescales. J. Soils Sediments 14(8, 1479e1492.
    • Ben-David, M., Hanley, T.A., Schell, D.M., 1998. Fertilization of terrestrial vegetation by spawning Pacific salmon: the role of flooding and predator activity. Oikos 83, 47e55.
    • Bihari, A., Dezs, o} Z., 2008. Examination of the effect of particle size on the radionuclide content of soils. J. Environ. Radioact. 99, 1083e1089.
    • Bilby, R.E., Fransen, B.R., Bisson, P.A., 1996. Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: evidence from stable isotopes. Can. J. Fish. Aquat. Sci. 53, 164e173.
    • Boardman, J., 2016. The value of Google Earth for erosion mapping. Catena 143, 123e127.
    • Bottrill, L., Walling, D.E., Leeks, G.J.L., 2000. Using Recent Overbank Deposits to Investigate Contemporary Sediment Sources in Larger River Basins. Tracers in geomorphology. Wiley, Chichester.
    • Brosinsky, A., Foerster, S., Segl, K., Kaufmann, H., 2014. Spectral fingerprinting: sediment source discrimination and contribution modelling of artificial mixtures based on VNIR-SWIR spectral properties. J. Soil Sediments 14, 1949e1964.
    • Brown, A.G., 1985. The potential use of pollen in the identification of suspended sediment sources. Earth Surf. Process. Landf. 10, 27e32.
    • Bubb, J.M., Lester, J.N., 1991. The impact of heavy metals on lowland rivers and the implications for man and the environment. Sci. Total Environ. 100, 207e233.
    • Bunzl, K., Schmidt, W., Sanson, B., 1976. Kinetics of ion exchange in soil organic matter IV, adsorption and desorption of Pbþ2, Cuþ2, Cdþ2, Znþ2, and Caþ2, by peat. J. Soil Sci. 27, 32e41.
    • Caitcheon, G., 1998. The significance of various sediment magnetic mineral fractions for tracing sediment sources in Killimicat creek. Catena 32, 131e142.
    • Carter, J., Owens, P.N., Walling, D.E., Leeks, G.J.L., 2003. Fingerprinting suspended sediment sources in a large urban river system. Sci. Total Environ. 314e316, 513e534.
    • Collins, A.L., 2015. A Short Primer on Sediment Source Fingerprinting for Catchment Sensitive. Farming Officers. Environment Agency, UK, 70 pp.
    • Collins, A.L., Walling, D.E., 2002. Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. J. Hydrol. 261, 218e244.
    • Collins, A.L., Walling, D.E., 2004. Documenting catchment suspended sediment sources: problems, approaches and prospects. Prog. Phys. Geogr. 28, 159e196.
    • Collins, A.L., Walling, D.E., 2007. The storage and provenance of fine sediment on the channel bed of two contrasting lowland permeable catchments, UK. River Res. Appl. 23, 429e450.
    • Collins, A.L., Walling, D.E., Leeks, G.J.L., 1996. Composite fingerprinting of the spatial source of fluvial suspended sediment: a case study of the Exe and Severn River basins, United Kingdom. Geomorphol. Relief, Process. Environ. 2, 41e54.
    • Collins, A.L., Walling, D.E., Leeks, G.J.L., 1997a. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 29, 1e27.
    • Collins, A.L., Walling, D.E., Leeks, G.J.L., 1997b. Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type. Geogr Ann. 79A, 239e254.
    • Collins, A.L., Walling, D.E., Leeks, G.J.L., 1997c. Using the geochemical record preserved in floodplain deposits to reconstruct recent changes in river basin sediment sources. Geomorphology 19, 151e167.
    • Collins, A.L., Walling, D.E., Leeks, G.J.L., 1998. Use of composite fingerprints to determine the spatial provenance of the contemporary suspended sediment load transported by rivers. Earth Surf. Process. Landf. 23, 31e52.
    • Collins, A.L., Walling, D.E., Sichingabula, H.M., Leeks, G.J.L., 2001a. Using 137Cs measurements to quantify soil erosion and redistribution rates for areas under different land use in the Upper Kaleya River basin, southern Zambia. Geoderma 104, 299e323.
    • Collins, A.L., Walling, D.E., Sichingabula, H.M., Leeks, G.J.L., 2001b. Suspended sediment source fingerprinting in a small tropical catchment and some management implications. Appl. Geogr. 21, 387e412.
    • Collins, A.L., Zhang, Y., Walling, D.E., Black, K., 2010a. Apportioning sediment sources in a grassland dominated agricultural catchment in the UK using a new tracing framework. In: Sediment Dynamics for a Changing Future. International Association of Hydrological Sciences Publication No. 337, Wallingford, UK, pp. 68e75.
    • Collins, A.L., Walling, D.E., Stroud, R.W., Robson, M., Peet, L.M., 2010b. Assessing damaged road verges as a suspended sediment source in the Hampshire Avon catchment, southern United Kingdom. Hydrol. Process. 24, 1106e1122.
    • Collins, A.L., Walling, D.E., Webb, L., King, P., 2010c. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma 155, 249e261.
    • Collins, A.L., Zhang, Y., Walling, D.E., Grenfell, S.E., Smith, P., 2010d. Tracing sediment loss from eroding farm tracks using a geochemical fingerprinting procedure combining local and genetic algorithm optimisation. Sci. Total Environ. 408, 5461e5471.
    • Collins, A.L., Zhang, Y., McChesney, D., Walling, D.E., Haley, S.M., Smith, P., 2012a. Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Sci. Total Environ. 414, 301e317.
    • Collins, A.L., Zhang, Y., Walling, D.E., Grenfell, S.E., Smith, P., Grischeff, J., Locke, A., Sweetapple, A., Brogden, D., 2012b. Quantifying fine-grained sediment sources in the River Axe catchment, southwest England: application of a Monte Carlo numerical modelling framework incorporating local and genetic algorithm optimisation. Hydrol. Process. 26, 1962e1983.
    • Collins, A.L., Zhang, Y.S., Duethmann, D., Walling, D.E., Black, K.S., 2013a. Using a novel tracing-tracking framework to source fine-grained sediment loss to watercourses at sub-catchment scale. Hydrol. Process. 27, 959e974.
    • Collins, A.L., Williams, L.J., Zhang, Y.S., Marius, M., Dungait, J.A., Smallman, D.J., Dixon, E.R., Stringfellow, A., Sear, D.A., Jones, J.I., Naden, P.S., 2013b. Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Sci. Total Environ. 456e457, 181e195.
    • Collins, A.L., Zhang, Y., Hickinbotham, R., Bailey, G., Darlington, S., Grenfell, S.E., Evans, R., Blackwell, M., 2013c. Contemporary fine-grained bed sediment sources across the River Wensum Demonstration Test Catchment, UK. Hydrol. Process. 27, 857e884.
    • Collins, A.L., Williams, L.J., Zhang, Y.S., Marius, M., Dungait, J.A.J., Smallman, D.J., Dixon, E.R., Stringfellow, A., Sear, D.A., Jones, J.I., Naden, P.S., 2014. Sources of sediment-bound organic matter infiltrating spawning gravels during the incubation and emergence life stages of salmonids. Agric. Ecosyst. Environ. 196, 76e93.
    • Cooper, R.J., Krueger, T., Hiscock, K.M., Rawlins, B.G., 2014. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: a Bayesian model comparison. Water Resour. Res. 50, 2014WR016194.
    • Croft, D.J., Pye, K., 2004. Colour theory and the evaluation of an instrumental method of measurement using geological samples for forensic applications. In: Pye, K., Croft, D.J. (Eds.), Forensic Geosciences: Principles, Techniques, and Applications, vol. 232. Geological Society, London, Special Publications, pp. 49e62.
    • Dearing, J.A., 2000. Natural magnetic tracers in fluvial geomorphology. In: Foster, I.D.L.F. (Ed.), Tracers in Geomorphology. Wiley, Chichester, UK, pp. 57e82.
    • Devereux, O.H., Prestegaard, K.I., Needelman, B.A., Gellis, A.C., 2010. Suspendedsediment source in an urban watershed, northeast branch Anacostia River, Maryland. Hydrol. Process. 24, 1391e1403.
    • Douglas, G., Palmer, M., Caitcheon, G., 2003. The provenance of sediments in Moreton Bay, Australia: a synthesis of major, trace element and SreNdePb isotopic geochemistry, modelling and landscape analysis. Hydrobiologia 494, 145e152.
    • Douglas, G.B., Kuhnen, M., Radke, L.C., Hancock, G., Brooke, B., Palmer, M.J., Pietsch, T., Ford, P.W., Trefry, M.G., Packett, R., 2010. Delineation of sediment sources to a coastal wetland in the Great Barrier Reef catchment: influence of climate variability and land clearing since European arrival. Environ. Chem. 7, 190e206.
    • Duerdoth, C.P., Arnold, A., Murphy, J.F., Naden, P.S., Scarlett, P., Collins, A.L., Sear, D.A., Jones, J.I., 2015. Assessment of a rapid method for quantitative reachscale estimates of deposited fine sediment in rivers. Geomorphology 230, 37e50.
    • D'Haen, K., Verstraeten, G., Degryse, P., 2012. Fingerprinting historical fluvial sediment fluxes. Prog. Phys. Geogr. 362, 154e186.
    • D'Haen, K., Dusar, B., Verstraeten, G., Degryse, P., De Brue, H., 2013. A sediment fingerprinting approach to understand the geomorphic coupling in an eastern Mediterranean mountainous river catchment. Geomorphology 197, 64e75.
    • Eberl, D.D., 2004. Quantitative mineralogy of the Yukon River system: changes with reach and season, and determining sediment provenance. Am. Min. 89, 1784e1794.
    • Evrard, O., Poulenard, J., Nemery, J., Ayrault, S., Gratiot, N., Duvert, C., Prat, C., Lefevre, I., Bonte, P., Esteves, M., 2013. Tracing sediment sources in a tropical highland catchment of central Mexico by using conventional and alternative fingerprinting methods. Hydrol. Process. 27, 911e922.
    • Evrard, O., Laceby, P.J., Huon, S., Lefevre, I., Sengtaheuanghoung, O., Ribolzi, O., 2016. Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbex) to investigate temporal sediment source dynamics in tropical ephemeral river systems. J. Soils Sediments 16, 1130e1144.
    • Forstner, U., Salomans, W., 1980. Trace metal analysis on polluted sediments. Part I: assessment of source and intensities. Environ. Technol. Lett. 1, 494e505.
    • Foster, I.D.L., Charlesworth, S., 1996. Heavy metals in the hydrological cycle: trends and explanation. Hydrol. Process. 10, 227e261.
    • Foster, I.D.L., Lees, J.A., 2000. Tracers in geomorphology: theory and applications in tracing fine particulate sediments. In: Foster, I.D.L. (Ed.), Tracers in Geomorphology. Wiley, Chichester, pp. 3e20.
    • Foster, I.D.L., Lees, J.A., Owens, P.N., Walling, D.E., 1998. Mineral magnetic characterization of sediment sources from an analysis of lake and floodplain sediments in the catchments of the Old Mill reservoir and Slapton Ley, South Devon, UK. Earth Surf. Process. Landf. 23, 685e703.
    • Foster, I.D.L., Oldfield, F., Flower, R.J., Keatings, K., 2008. Trends in mineral magnetic signatures in a long core from Lake Qarun, Middle Egypt. J. Palaeolimnol. 40, 835e849.
    • Foster, I.D.L., Rowntree, K.M., Boardman, J., Mighall, T.M., 2012. Changing sediment yield and sediment dynamics in the Karoo uplands, South Africa; postEuropean impacts. Land Degrad. Dev. 23, 508e522.
    • Foucher, A., Laceby, P.J., Salvador-Blanes, S., Evrard, O., Le Gall, M., Lefevre, I., Cerdan, O., Rajkumar, V., Desmet, M., 2015. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: the application of a thorium-based particle size correction in sediment fingerprinting. Geomorphology 250, 271e281.
    • Fox, J.F., Papanicolaou, A.N., 2008. Application of the spatial distribution of nitrogen stable isotopes for sediment tracing at the watershed scale. J. Hydrol. 358, 46e55.
    • Franks, S.W., Rowan, J.S., 2000. Multi-parameter fingerprinting of sediment sources: uncertainty estimation and tracer selection. Comput. methods water Resour. 13, 1067e1074.
    • Fryirs, K., 2013. (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surf. Process. Landf. 38, 30e46. State of Science Series.
    • Gellis, A.C., Landwehr, J.M., 2006. Identifying sources of fine-grained suspendedsediment in the Pocomoke River, an Eastern Shore tributary to the Chesapeake Bay. In: Proceedings of the 8th Federal Interagency Sedimentation Conference, 2e6 April, Reno, NV, USA, Paper 5C-1 in CD_ROM file, ISBN 0-9779007-1-1.9.
    • Gellis, A., Noe, G.B., 2013. Sediment source analysis in the Linganore Creek watershed, Maryland, USA, using the sediment fingerprinting approach: 2008 to 2010. J. Soils Sediments 13 (10).
    • Gellis, A.C., Walling, D.E., 2011. Sediment-source fingerprinting (tracing) and sediment budgets as tools in targeting river and watershed restoration programs. In: Simon, A., Bennett, S., Castro, J.M. (Eds.), Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, pp. 263e291. American Geophysical Union Monograph Series 194.
    • Gellis, A., Hupp, C., Pavich, M., Landwehr, J., Banks, W., Hubbard, B., Langland, M., Ritchie, J., Reuter, J., 2009. Sources, Transport, and Storage of Sediment in the Chesapeake Bay Watershed. U.S. Geological Survey Scientific Investigations Report 2008e5186, p. 95.
    • Gellis, A.C., Noe, G.B., Clune, J.W., Myers, M.K., Hupp, C.R., Schenk, E.R., Schwarz, G.E., 2015. Sources of Fine Grained Sediment in the Linganore Creek Watershed, Frederick and Carroll Counties, Maryland, 2008e10: U.S. Geological Survey Scientific Investigations Report 2014e5147, 56 pp. Available at: https:// pubs.er.usgs.gov/publication/70048467.
    • Gelis, A.C., Fuller, C.C., Van Meter, P.C., 2016. Sources and ages of fine-grained sediment to streams usin fallout radionuclides in the Mid-Western United States. J. Environ. Manag.
    • Gibbs, R., 1977. Transport phases of transition metals in the Amazon and Yukon Rivers. Geol. Soc. Am. Bull. 88, 829e843.
    • Gingele, F.X., De Deckker, P., 2005. Clay mineral, geochemical and Sr-Nd isotopic fingerprinting of sediments in the Murray-Darling fluvial system, southeast Australia. Aust. J. Earth Sci. 52, 965e974.
    • Goldberg, E., 1954. Marine geochemistry I e chemical scavengers of the sea. J. Geol. 62, 249e265.
    • Goldberg, E., Arrhenius, G., 1958. Chemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta 13, 153e212.
    • Grimshaw, D.L., Lewin, J., 1980. Source identification for suspended sediments. J. Hydrol. 47, 151e162.
    • Guzman, G., Quinton, J.N., Nearing, M.A., Mabit, L., Gomez, J.A., 2013. Sediment tracers in water erosion studies: current approaches and challenges. J. Soils Sediments 13, 816e833.
    • Haddachi, A., Olley, J., Pietsch, T., 2015. Quantifying sources of suspended sediment in three size fractions. J. Soils Sediments 15, 2086e2100.
    • Haddadchi, A., Ryder, D.S., Evrard, O., Olley, J., 2013. Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. Int. J. Sediment Res. 28, 560e578.
    • Haddadchi, A., Olley, J., Laceby, P., 2014. Accuracy of mixing models in predicting sediment source contributions, 2014 Nov 1;497-498:139e52 Sci. Total Environ.. http://dx.doi.org/10.1016/j.scitotenv.2014.07.105. Epub 2014 Aug 14.
    • Hancock, G.J., Revill, A.T., 2013. Erosion source discrimination in a rural Australian catchment using compound-specific isotope analysis (CSIA). Hydrol. Process. 27, 923e932.
    • Hatfield, R.G., Maher, B.A., 2009. Fingerprinting upland sediment sources: particle size-specific magnetic linkages between soils, lake sediments and suspended sediments. Earth Surf. Process. Landf. 34, 1359e1373.
    • He, Q., Owens, P.N., 1995. Determination of suspended sediment provenance using caesium-137, unsupported lead-210 and radium-226: a numerical mixing model approach. In: Foster, I.D.L., Gurnell, A.M., Webb, B.W (Eds.), Sediment and Water Quality in River Catchments. Wiley, Chichester, pp. 207e227.
    • He, Q., Walling, D.E., 1996. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J. Environ. Radioact. 30, 117e137.
    • Horowitz, A.J., 1985. A Primer on Sediment-trace Metal Chemistry. US Geological Survey Water Supply Paper 2277, 67 pp.
    • Horowitz, A., 1991. A Primer on Sediment-trace Element Chemistry, second ed. Lewis Publishing Co, Chelsea, p. 136.
    • Horowitz, A.J., Elrick, K.A., 1987. The relation of stream sediment surface area, grainsize and composition to trace element chemistry. Appl. Geochem. 2, 437e451.
    • Horowitz, A.J., Stephens, V.C., Elrick, K.A., Smith, J.A., 2012. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data. Hydrol. Process. 26, 1090e1114.
    • Hughes, A.O., Olley, J.M., Croke, J.C., McKergow, L.A., 2009. Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia. Geomorphology 104, 262e275.
    • Jonasson, I., 1977. Geochemistry of sediment/water interactions of metals, including observations on availability. In: Shear, H., Watson, A. (Eds.), The Fluvial Transport of Sediment-associated Nutrients and Contaminants. IJC/PLUARG, Windsor, Ontario, pp. 255e271.
    • Jones, B., Bowser, C., 1978. The mineralogy and related chemistry of lake sediments. In: Lerman, A. (Ed.), Lakes: Chemistry, Geology, Physics. Spriner-Verlag, New York, pp. 179e235.
    • Jones, J.I., Murphy, J.F., Collins, A.L., Sear, D.A., Naden, P.S., 2012. The impact of fine sediment on macro-invertebrates. River Res. Appl. 28, 1055e1071.
    • Juracek, K., Ziegler, A., 2009. Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA. Int. J. Sediment. Res. 24, 108e125.
    • Kemp, P., Sear, D., Collins, A., Naden, P., Jones, I., 2011. The impacts of fine sediment on riverine fish. Hydrol. Process. 25, 1800e1821.
    • Klages, M.G., Hsieh, Y.P., 1975. Suspended solids carried by the Gallatin River of Southwestern Montana: II. Using mineralogy for inferring sources. J. Environ. Qual. 4, 68e73.
    • Koiter, A.J., Owens, P.N., Petticrew, E.L., Lobb, D.A., 2013. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth Sci. Rev. 125, 24e42.
    • Kononova, M., 1966. Soil Organic Matter, second ed. Pergamon Press, New York, pp. 377e419. Nowakowski, T., and Newman, A., translators.
    • Krause, A.K., Franks, S.W., Kalma, J.D., Loughran, R.J., Rowan, J.S., 2003. Multiparameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia. Catena 53, 327e348.
    • Kraushaar, S., Schumann, T., Ollesch, G., Schubert, M., Vogel, H.-J., Siebert, C., 2015. Sediment fingerprinting in northern Jordan: element specific correction factors in a carbonatic setting. J. Soils Sediments. http://dx.doi.org/10.1007/s11368-015- 1179-2.
    • Krauskopf, K., 1956. Factors controlling the concentration of thirteen rare metals in sea water. Geochim. Cosmochim. Acta 9, 1e32.
    • Krein, A., Petticrew, E., Udelhoven, T., 2003. The use of fine sediment fractal dimensions and colour to determine sediment sources in a small watershed. Catena 53, 165e179.
    • Kurashige, Y., Fusejima, Y., 1997. Source identification of suspended sediment from grain-size distributions: I. application of nonparametric statistical tests. Catena 31, 39e52.
    • Laceby, J.P., Olley, J., 2015. An examination of geochemical modelling approaches to tracing sediment sources incorporating distribution mixing and elemental correlations. Hydrol. Process 29, 1669e1685. http://dx.doi.org/10.1002/ hyp.10287.
    • Laceby, J.P., McMahon, J., Evrard, O., Olley, J., 2015. A comparison of geological and statistical approaches to element selection for sediment fingerprinting. J. Soils Sediments 15, 2117e2131.
    • Lal, R., Stewart, B.A., 2013. Principles of Sustainable Soil Management in Agroecosystems. CRC Press, USA.
    • Lamba, J., Karthikeyan, K.G., Thompson, A.M., 2015a. Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting. Geoderma 239e240, 25e33.
    • Lambert, C.P., Walling, D.E., 1988. Measurement of channel storage of suspended sediment in a gravel-bed river. Catena 15, 65e80.
    • Lees, J.A., 1997. Mineral magnetic properties of mixtures of environmental and synthetic materials: linear additivity and interaction effects. Geophys. J. Int. 131, 335e346.
    • Lees, J.A., 1999. Evaluating magnetic parameters for use in source identification, classification and modelling of natural and environmental materials. In: Walden, J., Oldfield, F., Smith, J. (Eds.), Environmental Magnestism: a Practical Guide. Quaternary Research Association, London, pp. 113e138. QRA Technical Guide 6.
    • Legout, C., Poulenard, J., Nemery, J., Navratil, O., Grangeon, T., Evrard, O., Esteves, M., 2013. Quantifying suspended sediment sources during runoff events in headwater catchments using spectrocolorimetry. J. Soils Sediments 13, 1478e1492.
    • Mackas, D.L., Denman, K.L., Bennett, A.F., 1987. Least squares multiple analysis of water mass composition. J. Geophys. Res. 92 (C3), 2907e2918.
    • Maher, B.A., Watkins, S.J., Brunskill, G., Alexander, J., Fielding, C.R., 2009. Sediment provenance in a tropical fluvial and marine context by magnetic 'fingerprinting' of transportable sand fractions. Sedimentology 56, 841e861.
    • Martinez-Carreras, N., Gallart, F., Iffly, J., Pfister, L., Walling, D., Krein, A., 2008. Uncertainty Assessment in Suspended Sediment Fingerprinting Based on Tracer Mixing Models: a Case Study from Luxembourg. International Association of Hydrological Sciences Publication, pp. 94e105.
    • Martinez-Carreras, N., Udelhoven, T., Krein, A., Gallart, F., Iffly, J.F., Ziebel, J., Hoffmann, L., Pfister, L., Walling, D.E., 2010. The use of sediment colour measured by diffuse reflectance spectrometry to determine sediment sources: application to the Attert River catchment (Luxembourg). J. Hydrol. 382, 49e63.
    • Massoudieh, A., Gellis, A., Banks, W.S., Wieczorek, M.E., 2012. Suspended sediment source apportionment in Chesapeake Bay watershed using Bayesian chemical mass balance receptor modelling. Hydrol. Process. 27, 3363e3374.
    • Matisoff, G., Wilson, C.G., Whiting, P.J., 2005. The 7Be/210Pbxs ratio as an indicator of suspended sediment age or fraction new sediment in suspension. Earth Surf. Process. Landf. 30, 1191e1201.
    • Maule, C.P., Dudas, M.J., 1988. Preliminary identification of soil separates associated with fallout 137Cs. Can. J. Earth Sci. 69, 171e175.
    • McBratney, A.B., Webster, R., 1983. How many observations are needed for regional estimation of soil properties. Soil Sci. 135, 177e183.
    • Miller, J.R., Orbock Miller, S.M., 2007. Contaminated Rivers: a Geomorphologicalgeochemical Approach to Site Assessment and Remediation. Springer, Berlin.
    • Miller, J., Lord, M., Yurkovich, S., Mackin, G., Kolenbrander, L., 2005. Historical trends in sedimentation rates and sediment provenance, Fairfield Lake, western North Carolina. JAWRA 41, 1053e1075.
    • Miller, J., Mackin, G., Lechler, P., Lord, M., Lorentz, S., 2013. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa. Hydrol. Earth Syst. Sci. 17, 761e781.
    • Miller, J., Macklin, G., Orbock Miller, S.M., 2015. Application of Geochemical Tracers to Fluvial Sediment. Springer Publishing.
    • Milliman, J.D., Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1e21.
    • Motha, J.A., Wallbrink, P.J., Hairsine, P.B., Grayson, R.B., 2002a. Tracer properties of eroded sediment and source material. Hydrol. Process 16, 1983e2000.
    • Motha, J.A., Wallbrink, P.J., Hairsone, B., Grayson, R.B., 2002b. Tracer properties of eroded sediment and source material. Hydrol. Process. 16, 1983e2000.
    • Motha, J.A., Wallbrink, P.J., Hairsine, P.B., Grayson, R.B., 2003. Determining the sources of suspended sediment in a forested catchment in south eastern Australia. Water Resour. Res. 39, 1056.
    • Motha, J.A., Wallbrink, P.J., Hairsine, P.B., Grayson, R.B., 2004. Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia. J. Hydrol. 286, 1e18.
    • Mukundan, R., Walling, D.E., Gellis, A.C., Slattery, M.C., Radcliffe, D.E., 2012. Sediment source fingerprinting: transforming from a research tool to a management tool. J. Am. Water Resour. Assoc. 48, 1241e1257.
    • Nosrati, K., Govers, G., Ahmadi, H., Sharifi, F., Amoozegar, M.A., Merckx, R., Vanmaercke, M., 2011. An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints? Int. J. Sediment Res. 26, 136e151.
    • Oldfield, F., Maher, B.A., Appleby, P.G., 1989. Sediment source variations and lead210 inventories in recent Potomac Estuary sediment cores. J. Quat. Sci. 4, 189e200.
    • Oldfield, F., Hao, Q., Bloemendal, J., Gibbs-Eggar, Z., Patil, S., Guo, Z., 2009. Links between bulk sediment particle size and magnetic grain-size:general observations and implications for Chinese loess studies. Sedimentology 56, 2091e2106.
    • Owens, P.N., Walling, D.E., Leeks, G.J.L., 1999. Use of floodplain sediment cores to investigate recent historical changes in overbank sedimentation rates and sediment sources in the catchment of the River Ouse, Yorkshire, UK. Catena 36, 21e47.
    • Owens, P.N., Walling, D.E., Leeks, G.J.L., 2000. Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model. In: Foster, I.D.L. (Ed.), Tracers in Geomorphology. Wiley, Chichester, pp. 291e308.
    • Palazon, L., Latorre, B., Gaspar, L., Blake, W.H., Smith, H.G., Navas, A., 2015. Comparing catchment sediment fingerprinting procedures using an autoevaluation approach with virtual sample mixtures. Sci. Total Environ. 532, 456e466.
    • Peart, M.R., Walling, D.E., 1982. Particle Size Characteristics of Fluvial Suspended Sediment. IAHS Publ. No. 137. IAHS Press, Wallingford, UK, pp. 397e407.
    • Peart, M.R., Walling, D.E., 1986. Fingerprinting sediment source: the example of a drainage basin in Devon, UK. In: Hadley, R.F. (Ed.), Drainage Basin Sediment Delivery. IAHS Press, Wallingford, pp. 41e55. IAHS Publ. No. 159.
    • Peart, M.R., Walling, D.E., 1988. Techniques for establishing suspended sediment sources in two drainage basins in Devon, UK: a comparative assessment. In: Bordas, M.P., Walling, D.E. (Eds.), Sediment Budgets. IAHS Press, Wallingford, UK, pp. 269e279. IAHS Publ. No. 174.
    • Perg, L.A., Anderson, R.S., Finkel, R.C., 2003. Use of cosmogenic radionuclides as a sediment tracer in the Santa Cruz littoral cell, California, United States. Geology 31, 299e302.
    • Phillips, J.M., Russell, M.A., Walling, D.E., 2000. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol. Process. 14, 2589e2602.
    • Pittam, N., Foster, I., Mighall, T., 2009. An integrated lake-catchment approach for determining sediment source changes at Aqualate Mere, Central England. J. Paleolimnol. 42, 215e232.
    • Porto, P., Walling, D.E., Callegari, G., 2005. Investigating Sediment Sources within a Small Catchment in Southern Italy, vol. 291. IAHS-AISH Publication, pp. 113e122.
    • Poulenard, J., Legout, C., Nemery, J., Bramorski, J., Navratil, O., Douchin, A., Fanget, B., Perrette, Y., Evrard, O., Esteves, M., 2012. Tracing sediment sources during floods using Diffuse Reflectance Infrared Fourier Transform Spectrometry (DRIFTS): a case study in a highly erosive mountainous catchment (Southern French Alps). J. Hydrol. 414e145, 452e462.
    • Pulley, Rowntree, 2016. Stages in the Life of a Magnetic Grain: sediment source discrimination, particle size effects and spatial variation in the South Africa Karoo. Geoderma 271, 134e143.
    • Pulley, S., Foster, I., Antunes, P., 2015a. The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin. Geomorphology 228, 303e319.
    • Pulley, S., Foster, I., Antunes, P., 2015b. The application of sediment fingerprinting to floodplain and lake sediment cores: assumptions and uncertainties evaluated through case studies in rhe Nene basin, UK. J. Soils Sediments 15, 2132e2154.
    • Pulley, S., Foster, I., Rowntree, K., 2015c. Conservatism of mineral magnetic signatures in farm dam sediments in the South African Karoo: the potential effects of particle size and post-depositional diagenesis. J. Soil Sediments. http:// dx.doi.org/10.1007/s11368-015-1265-5 (in press).
    • Pulley, S., Foster, I.D.L.F., Collins, A.L., 2016. The impact of catchment source group classification on the accuracy of sediment fingerprinting estimates. J. Environ. Manage.
    • Rashid, M., 1974. Adsorption of metals on sedimentary and peat humic acids. Chem. Geol. 13, 115e123.
    • Reiffarth, D., Petticrew, E.L., Owens, P.N., Lobb, D.A., 2016. Identification of sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: a review. Sci. Total Environ. 565, 8e27.
    • Rex, R., Goldberg, E., 1958. Quartz contents of pelagic sediments of the Pacific Ocean. Tellus 10, 153e159.
    • Rousseeuw, P., Croux, C., 1993. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88, 1273e1283.
    • Rowan, J.S., Goodwill, P., Franks, S.W., 2000. Uncertainty estimation in fingerprinting suspended sediment sources. In: Foster, I.D.L. (Ed.), Tracers in Geomorphology. Wiley, Chichester, pp. 279e290.
    • Rowan, J.S., Black, S., Franks, S.W., 2011. Sediment fingerprinting as an environmental forensics tool explaining cyanobacteria blooms in lakes. Appl. Geogr. 32, 832e843.
    • Russell, M.A., Walling, D.E., Hodgkinson, R.A., 2000. Appraisal of a simple sampling device for collecting time-integrated fluvial suspended sediment samples. In: The Role of Erosion and Sediment Transport in Nutrient and Contaminant Transfer. IAHS Press, Wallingford, UK, pp. 119e127. IAHS Publ. No. 263.
    • Russell, M.A., Walling, D.E., Hodgkinson, R.A., 2001. Suspended sediment sources in two small lowland agricultural catchments in the UK. J. Hydrol. 252, 1e24.
    • Saxby, J., 1969. Metal-organic chemistry of the geochemical cycle. Rev. Pure Appl. Chem. 19, 131e150.
    • Sheriff, S.P., Franks, S.W., Rowan, J.S., OhUallachain, D., 2015. Uncertainty-based assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment fingerprinting using synthetic and field data. J. Soils Sediments 15 (10), 2101e2116.
    • Slattery, M.C., Burt, T.P., Walden, J., 1995. The Application of Mineral Magnetic Measurements to Quantify Within-storm Variations in Suspended Sediment Sources. IAHS Press, Wallingford, pp. 143e151. IAHS Publ. No. 229.
    • Small, I.F., Rowan, J.S., Franks, S.W., 2002. Quantitative sediment fingerprinting using a Bayesian uncertainty estimation framework. In: Dyer, F.J., Thoms, M.C., Olley, J.M. (Eds.), Structure, Function and Management Implications of Fluvial Sedimentary Systems. IAHS, Wallingford, pp. 443e450. IAHS Publication 276.
    • Small, I.F., Rowan, J.S., Franks, S.W., Wyatt, A., Duck, R.W., 2004. Bayesian sediment fingerprinting provides a robust tool for environmental forensic geoscience application. In: Pye, K., Croft, D.J. (Eds.), Forensic Geoscience: Principles, Techniques and Applications, vol. 232. Geological Society, London, Special Publications, pp. 207e213.
    • Smith, H.G., Blake, W.H., 2014. Sediment fingerprinting in agricultural catchments: a critical re-examination of source discrimination and data corrections. Geomorphology 204, 177e191.
    • Smith, H.G., Sheridan, G.J., Lane, P.N.J., Noske, P., Heijnis, H., 2011. Changes to sediment sources following wildfire in a forested upland catchment, southeastern Australia. Hydrol. Process 25, 2878e2889.
    • Stewart, H.A., Massoudieh, A., Gellis, A., 2014. Sediment source apportionment in Laurel Hill Creek, PA, using Bayesian chemical mass balance and isotope fingerprinting. Hydrol. Process. 29 (11), 2545e2560.
    • Stone, M., Collins, A.L., Silins, U., Emelko, M.B., Zhang, Y.S., 2014. The use of composite fingerprints to quantify sediment sources in a wildfire impacted landscape, Alberta, Canada. Sci. Total Environ. 473e474, 642e650.
    • Stott, A.P., 1986. Sediment tracing in a reservoir-catchment system using a magnetic mixing model. Phys. Earth Planet. Inter. 42, 105e112.
    • Sutherland, R.A., 1991. Examination of caesium-137 areal activities in control (uneroded) locations. Soil Technol. 4, 33e50.
    • Swanson, V., Frist, L., Radar Jr., R., Huffman Jr., C., 1966. Metal Sorption by Northwest Florida Humate. U.S. Geological Survey Professional Paper 550-C, pp. 174e177.
    • Theuring, P., Rode, M., Behrens, S., Kirchner, G., Jha, A., 2013. Identification of fluvial sediment sources in the Kharaa River catchment, Northern Mongolia. Hydrol. Process. 27, 845e856.
    • Theuring, P., Collins, A.L., Rode, M., 2015. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia. Sci. Total Environ. 526, 77e87.
    • Vale, S.S., Fuller, I.C., Proctor, J.N., Basher, L.R., Smith, I.E., 2016. Application of a confluence-based sediment fingerprinting approach to a dynamic sedimentary catchment, New Zealand. Hydrol. Process. 30, 812e829.
    • van der Waal, B., Rowntree, K., Pulley, S., 2015. Flood bench chronology and sediment source tracing in the upper Thina catchment, South Africa: the role of transformed landscape connectivity. J. Soils Sediments 15 (12), 2398e2411. http://dx.doi.org/10.1007/s11368-015-1185-4.
    • Verstraeten, G., Poesen, J., 2000. estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield. Prog. Phys. Geogr. 24, 219e251.
    • Voli, M., Wegmann, K., Bohnenstiehl, D., Leithold, E., Osburn, C., Polyakov, V., 2013. Fingerprinting the sources of suspended sediment delivery to a large municipal drinking water reservoir: Falls Lake, Neuse River, North Carolina, USA. J. Soils Sediments 1692e1707. http://dx.doi.org/10.1007/s11368-013-0758-3.
    • Wall, G.J., Wilding, L.P., 1976. Mineralogy and related parameters of fluvial suspended sediments in northwestern Ohio. J. Environ. Qual. 5, 168e173.
    • Wallbrink, P.J., 2004. Quantifying the erosion processes and land-uses which dominate fine sediment supply to Moreton Bay, Southeast Queensland, Australia. J. Environ. Radioact. 76, 67e80.
    • Wallbrink, P., Murray, A., 1993. Use of fallout radionuclides as indicators of erosion processes. Hydrol. Process. 7, 297e304.
    • Wallbrink, P.J., Olley, J.M., Hancock, G., 2003. Tracer Assessment of Catchment Sediment Contributions toWestern Port, Victoria. CSIRO Land and Water Technical Report 8/03. CSIRO, Canberra, Australia.
    • Walling, D.E., 2005. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 344, 159e184.
    • Walling, D.E., 2013. The evolution of sediment source fingerprinting investigations in fluvial systems. J. Soils Sediments 1310, 1658e1675.
    • Walling, D.E., Collins, A.L., 2000. Integrated Assessment of Catchment Suspended Sediment Budgets: a Technical Manual. University of Exeter, 168 pp.
    • Walling, D.E., Collins, A.L., 2016. Fine sediment transport and management. In: Gilvear, D.J., Greenwood, M.T., Thoms, M.C., Wood, P.J. (Eds.), River Science: Research and Management for the 21st Century. Wiley, London, pp. 37e60.
    • Walling, D.E., Foster, I.D.L., 2016. Using environmental radionuclides and sediment geochemistry for tracing and dating fine fluvial sediment. In: Kondolf, G. Mathias, Piegay, Herve (Eds.), Tools in Fluvial Geomorphology, second ed. Wiley, Chichester, pp. 183e209.
    • Walling, D.E., Woodward, J.C., 1992. Use of Radiometric Fingerprints to Derive Information on Suspended Sediment Sources.
    • Walling, D.E., Woodward, J.C., 1995. Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK. Mar. Freshw. Res. 46, 327e336.
    • Walling, D.E., Peart, M.R., Oldfield, F., Thompson, R., 1979. Suspended sediment sources identified by magnetic measurements. Nature 281, 110e113.
    • Walling, D.E., Woodward, J.C., Nicholas, A.P., 1993. A multi-parameter approach to fingerprinting suspended sediment sources. In: Peters, N.E., Hoehn, E., Leibundgut, Ch, Tase, N., Walling, D.E. (Eds.), Tracers in Hydrology. IAHS, Wallingford, pp. 329e338. IAHS Publication No. 215.
    • Walling, D.E., Owens, P.N., Leeks, G.J.L., 1999. Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol. Process 13, 955e975.
    • Walling, D.E., Collins, A.L., McMellin, G., 2003a. A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales. Hydrobiologia 497, 91e108.
    • Walling, D.E., Owens, P.N., Foster, I.D.L., Lees, J., 2003b. Changes in the fine sediment dynamics of the Ouse and Tweed basins in the UK over the last 100e150 years. Hydrol. Process. 17, 3245e3269.
    • Walling, D.E., Collins, A.L., Jones, P.A., Leeks, G.J.L., Old, G., 2006. Establishing the fine-grained sediment budgets of the Pang and Lambourn LOCAR study catchments. J. Hydrol. 330, 126e141.
    • Walling, D.E., Collins, A.L., Stroud, R., 2008. Tracing suspended sediment and particulate phosphorus sources in catchments. J. Hydrol. 350, 274e289.
    • Weltje, G., 2012. Quantitative models of sediment generation and provenance: state of the art and future developments. Sediment. Geol. 280, 4e20.
    • Weltje, G.J., Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sediment. Geol. 162, 39e62.
    • Weltje, G.J., Prins, M.A., 2007. Genetically meaningful decomposition of grain-size distributions. Sediment. Geol. 202, 409e424.
    • Wethered, A.S., Ralph, T.J., Smith, H.G., Fryirs, K.A., Heijnis, H., 2015. Quantifying fluvial (dis)connectivity in an agricultural catchment using a geomorphic approach and sediment source tracing. J. Soils Sediments. http://dx.doi.org/ 10.1007/s11368-015-1202-7.
    • Wilkinson, S., Prosser, I., Rustomji, P., Read, A., 2009. Modelling and testing spatially distributed sediment budgets to relate erosion processes to sediment yields. Environ. Model. Softw. 24, 489e501.
    • Wilkinson, S., Hancock, G., Bartley, R., Hawdon, A., Keen, R., 2013. Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Agric. Ecosyst. Environ. 180, 90e102.
    • Wilkinson, S.N., Olley, J.M., Furuichi, T., Burton, J., Kinsey-Henderson, A.E., 2015. Sediment source tracing with stratified sampling and weightings based on spatial gradients in soil erosion. J. Soils Sediments. http://dx.doi.org/10.1007/ s11368-015-1134-2.
    • Yang, X.P., Zhang, F., Fu, X.D., Wang, X.M., 2008. Oxygen isotopic compositions of quartz in the sand seas and sandy lands of northern China and their implications for understanding the provenances of aeolian sands. Geomorphology 102, 278e285.
    • Yu, L., Oldfield, F., 1989. A multivariate mixing model for identifying sediment source from magnetic measurements. Quat. Res. 32, 168e181.
    • Yu, L., Oldfield, F., 1993. Quantitative sediment source ascription using magnetic measurements in a reservoir-catchment system near Nijar, SE Spain. Earth Surf. Process. Landf. 18, 441e454.
    • Zhang, J., Huang, W.W., 1993. Dissolved trace metals in the Huanghe: the most turbid large river in the world. Water Res. 27, 1e8.
    • Zhang, W., Xing, Y., Yu, L., Feng, H., Lu, M., 2008. Distinguishing sediments from the Yangtze and Yellow Rivers, China: a mineral magnetic approach. Holocene 18, 1139e1145.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article