LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dent, Kevin; Allen, Harriet A.; Braithwaite, Jason J.; Humphreys, Glyn W. (2012)
Publisher: Frontiers
Journal: Frontiers in Psychology
Languages: English
Types: Article
Subjects: Review Article, Psychology, visual search, feature binding, conjunction search, BF1-990, attention, inhibition
The relatively common experimental visual search task of finding a red X amongst red O’s and green X’s (conjunction search) presents the visual system with a binding problem. Illusory conjunctions of features across objects must be avoided and only features present in the same object bound together. Correct binding into unique objects by the visual system may be promoted, and illusory conjunctions minimised, by inhibiting the locations of distractors possessing non-target features (e.g. Treisman & Sato, 1990). Such parallel rejection of interfering distractors leaves the target as the only item competing for selection; thus solving the binding problem. In the present article we explore the theoretical and empirical basis of this process of active distractor inhibition in search. Specific experiments that provide strong evidence for a process of active distractor inhibition in search are highlighted. In the final part of the article we consider how distractor inhibition, as defined here, may be realised at a neurophysiological level. Treisman, A, & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459-478.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, H. A., and Humphreys, G. W. (2007). Previewing distracters reduces their effective contrast. Vision Res. 47, 2992-3000.
    • Allen, H. A., Humphreys, G. W., and Matthews, P. M. (2008). A neural marker of content-specific active ignoring. J. Exp. Psychol. Hum. Percept. Perform. 34, 286-297.
    • Bernstein, L. J., and Robertson, L. C. (1998). Independence between illusory conjunctions of color and motion with shape following bilateral parietal lesions. Psychol. Sci. 9, 167-175.
    • Bouvier, S. E., and Engel, S. A. (2006). Behavioural deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16, 183-191.
    • Braithwaite, J. J., and Humphreys, G. W. (2003). Inhibition and anticipation in visual search: evidence from effects of color foreknowledge on preview search. Percept. Psychophys. 65, 213-237.
    • Braithwaite, J. J., Humphreys, G. W., and Hulleman, J. (2005). Colorbased grouping and inhibition in visual search: evidence from a probe detection analysis of preview search. Percept. Psychophys. 67, 81-101.
    • Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory. Psychol. Rev. 64, 205-215.
    • Broadbent, D. E. (1958). Perception and Communication. London: Pergamon Press.
    • Cepeda, N. J., Cave, K. R., Bichot, N. P., and Kim, M.-S. (1998). Spatial selection via feature-driven inhibition of distractor locations. Percept. Psychophys. 60, 727-746.
    • Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Neurosci. Rev. 3, 201-215.
    • Dent, K., Allen, H. A., Braithwaite, J. J., and Humphreys, G. W. (2012). Inhibitory guidance in visual search: the case of movement-form conjunctions. Atten. Percept. Psychophys. 74, 269-284.
    • Dent, K., Allen, H. A., and Humphreys, G. W. (2011a). Comparing segmentation by time and by motion in visual search: an fMRI investigation. J. Cogn. Neurosci. 23, 1710-1722.
    • Dent, K., Humphreys, G. W., and Braithwaite, J. J. (2011b). Spreading suppression and the guidance of search by movement. Psychon. Bull. Rev. 18, 690-696.
    • Driver, J., McLeod, P., and Dienes, Z. (1992). Motion coherence and conjunction search: implications for guided search theory. Percept. Psychophys. 51, 79-85.
    • Duncan, J. (1995). Target and nontarget grouping in visual search. Percept. Psychophys. 57, 117-120.
    • Duncan, J., and Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychol. Rev. 96, 433-458.
    • Duncan, J., and Humphreys, G. W. (1992). Beyond the search surface: visual search and attentional engagement. J. Exp. Psychol. Hum. Percept. Perform. 18, 578-588.
    • Found, A. (1998). Parallel coding of conjunctions in visual search. Percept. Psychophys. 60, 1117-1127.
    • Friedman-Hill, S., Robertson, L. C., and Treisman, A. (1995). Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269, 853-855.
    • Friedman-Hill, S., and Wolfe, J. M. (1995). Second-order parallel processing: Visual search for the odd item in a subset. J. Exp. Psychol. Hum. Percept. Perform. 21, 531-551.
    • Goodale, M. A., Milner, A. D., Jakobson, L. S., and Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature 349, 154-156.
    • Hommel, B. (2004). Event files. Feature binding in and across perception and action. Trends Cogn. Sci. (Regul. Ed.) 8, 494-500.
    • Humphreys, G. W. (2001). A multi-stage account of binding in vision: neuropsychological evidence. Vis. Cogn. 8, 381-410.
    • Humphreys, G. W., Cinel, C., Wolfe, J., Olson, A., and Klempen, N. (2000). Fractionating the binding process: neuropsychological evidence distinguishing binding of form from binding of surface features. Vision Res. 40, 1569-1596.
    • Humphreys, G. W., Jung-Stalmann, B., and Olivers, C. N. L. (2004). An analysis of the time course of attention in preview search. Percept. Psychophys. 66, 713-730.
    • Julesz, B. (1986). Texton gradients: the texton theory revisited. Biol. Cybern. 54, 464-469.
    • Karnath, H.-O., Rutter, J., Mandler, A., and Himmelbach, M. (2009). The anatomy of object recognition - visual form agnosia caused by medial occipitotemporal stroke. J. Neurosci. 29, 5854-5862.
    • Kim, M.-S., and Cave, K. R. (1995). Spatial attention in visual search for features and feature conjunctions. Psychol. Sci. 6, 376-380.
    • Klein, R. M. (1988). Inhibitory tagging system facilitates visual search. Nature 334, 430-431.
    • Klein, R. M. (2000). Inhibition of return. Trends Cogn. Sci. (Regul. Ed.) 4, 138-147.
    • Koshino, H. (2001). Activation and inhibition of stimulus features in conjunction search. Psychon. Bull. Rev. 8, 294-300.
    • Lamy, D., Antebi, C., Aviani, N., and Carmel, T. (2008). Priming of popout provides reliable measures of target activation and distractor inhibition in selective attention. Vision Res. 48, 30-41.
    • Li, Z. (2002). A saliency map in primary visual cortex. Trends Cogn. Sci. (Regul. Ed.) 6, 9-16.
    • MacLeod, C. M. (2007). “The concept of inhibition in cognition,” in Inhibition in Cognition, eds D. S. Gorfein and C. M. MacLeod (Washington, DC: American Psychological Association), 3-23.
    • MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., and Bibi, U. (2003). “In opposition to inhibition,” in The Psychology of Learning and Motivation, Vol. 43, ed. B. H. Ross (San Diego, CA: Academic Press), 163-214.
    • Mavritsaki, E., Allen, H. A., and Humphreys, G. W. (2010). Decomposing the neural mechanisms of visual marking using an interconnected network of spiking neurons: the spiking search over time and space model (sSoTS). Neuroimage 52, 934-946.
    • McLeod, P., Driver, J., and Crisp, J. (1988). Visual search for conjunctions of movement and form is parallel. Nature 332, 154-155.
    • McLeod, P., Driver, J., Dienes, Z., and Crisp, J. C. (1991). Filtering by movement in visual-search. J. Exp. Psychol. Hum. Percept. Perform. 17, 55-64.
    • McLeod, P., Heywood, C., Driver, J., and Zihl, J. (1989). Selective deficit of visual search in moving displays after extrastriate damage. Nature 339, 466-467.
    • Moore, C. M., and Egeth, H. (1998). How does feature-based attention affect visual processing? J. Exp. Psychol. Hum. Percept. Perform. 24, 1296-1310.
    • Müller, H., and Von Mühlenen, A. (2000). Probing distractor inhibition in visual search: inhibition of return. J. Exp. Psychol. Hum. Percept. Perform. 26, 1591-1605.
    • Müller, H. J., Von Mühlenen, A., and Geyer, T. (2007). Top-down inhibition of search distractors in parallel visual search. Percept. Psychophys. 69, 1373-1388.
    • Nakayama, K., and Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature 320, 264-265.
    • Nothdurft, H. C. (2002). Attention shifts to salient targets. Vision Res. 42, 1287-1306.
    • Olivers, C. N. L., and Humphreys, G. W. (2003). Visual marking inhibits singleton capture. Cogn. Psychol. 47, 1-42.
    • Olivers, C. N. L., Humphreys, G. W., Heinke, D., and Cooper, A. C. G. (2002). Prioritization in visual search: visual marking is not dependent on a mnemonic search. Percept. Psychophys. 64, 540-560.
    • Park, J., and Kanwisher, N. (1994). Negative priming for spatial locations: identity mismatching, not distractor inhibition. J. Exp. Psychol. Hum. Percept. Perform. 20, 613-623.
    • Payne, H. E., and Allen, H. A. (2011). Active ignoring in early visual cortex. J. Cogn. Neurosci. 23, 2046-2058.
    • Posner, M. I., and Cohen, Y. (1984). “Components of visual orienting,” in Attention and Performance X: Control of Language Processes, eds H. Bouma and D. G. Bouwhuis (London: L. Erlbaum Associates), 531-556.
    • Quinlan, P. T. (2003). Visual feature integration theory: past, present, and future. Psychol. Bull. 129, 643-673.
    • Riddoch, M. J., and Humphreys, G. W. (1987). A case of integrative visual agnosia. Brain 110, 1431-1462.
    • Riddoch, M. J., Humphreys, G. W., Akhtar, N., Allen, H., Bracewell, R. M., and Schofield, A. J. (2008). A tale of two agnosias: distinctions between form and integrative agnosia. Cogn. Neuropsychol. 25, 56-92.
    • Serences, J. T., Yantis, S., Culberson, A., and Awh, E. (2004). Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. J. Neurophysiol. 92, 3538-3545.
    • Shih, S.-I., and Sperling, G. (1996). Is there feature-based attentional selection in visual search? J. Exp. Psychol. Hum. Percept. Perform. 22, 758-779.
    • Sylvester, C. M., Jack, A. I., Corbetta, M., and Shulman, G. L. (2008). Anticipatory suppression of nonattended locations in visual cortex marks target location and predicts perception. J. Neurosci. 28, 6549-6556.
    • Takeda, Y., and Yagi, A. (2000). Inhibitory tagging in visual search can be found if search stimuli remain visible. Percept. Psychophys. 62, 927-934.
    • Treisman, A. (1988). Features and objects: the fourteenth Bartlett memorial lecture. Q. J. Exp. Psychol. 40A, 201-237.
    • Treisman, A., and Sato, S. (1990). Conjunction search revisited. J. Exp. Psychol. Hum. Percept. Perform. 16, 459-478.
    • Treisman, A., and Schmidt, H. (1982). Illusory conjunctions in the perception of objects. Cogn. Psychol. 14, 107-141.
    • Treisman, A. M., and Gelade, G. (1980). A feature integration theory of attention. Cogn. Psychol. 12, 97-136.
    • Tsal, Y., and Makovski, T. (2006). The attentional white bear phenomenon: the mandatory allocation of attention to expected distractor locations. J. Exp. Psychol. 32, 351-363.
    • Watson, D. G., and Humphreys, G. W. (1997). Visual marking: prioritizing selection for new objects by top down attentional inhibition of old objects. Psychol. Rev. 104, 90-122.
    • Wolfe, J. M., Cave, K. R., and Franzel, S. L. (1989). Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419-433.
    • Wolfe, J. M., and Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nat. Rev. Neurosci. 5, 1-7.
    • Zeki, S. (1990). A century of cerebral achromatopsia. Brain 113, 1721-1777.
    • Zeki, S. (1991). Cerebral akinetopsia (visual motion blindness). Brain 114, 811-824.
    • Zihl, J., Von Cramon, D., and Mai, N. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106, 313-340.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article