LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gilligan, Amy; Roecker, Steven W; Priestley, Keith Ferrin; Nunn, Ceri (2014)
Publisher: Geophysical Journal International
Languages: English
Types: Article
Subjects: Surface Waves and Free Oscillations, Crustal Structure, sub-02, Tomography, Asia, Intra-plate processes
The Tien Shan is the largest active intracontinental orogenic belt on Earth. To better understand the processes causing mountains to form at great distances from a plate boundary, we analyse passive source seismic data collected on 40 broad band stations of the MANAS project (2005-2007) and 12 stations of the permanent KRNET seismic network to determine variations in crustal thickness and shear wavespeed across the range. We jointly invert P- and S-wave receiver functions with surface wave observations from both earthquakes and ambient noise to reduce the ambiguity inherent in the images obtained from the techniques applied individually. Inclusion of ambient noise data improves constraints on the upper crust by allowing dispersion measurements to be made at shorter periods. Joint inversion can also reduce the ambiguity in interpretation by revealing the extent to which various features in the receiver functions are amplified or eliminated by interference from multiples. The resulting wavespeed model shows a variation in crustal thickness across the range. We find that crustal velocities extend to ∼ 75 km beneath the Kokshaal Range, which we attribute to underthrusting of the Tarim Basin beneath the southern Tien Shan. This result supports the plate model of intracontinental convergence. Crustal thickness elsewhere beneath the range is about 50 km, including beneath the Naryn Valley in the central Tien Shan where previous studies reported a shallow Moho. This difference apparently is the result of wavespeed variations in the upper crust that were not previously taken into account. Finally, a high velocity lid appears in the upper mantle of the Central and Northern part of the Tien Shan, which we interpret as a remnant of material that may have delaminated elsewhere under the range. km, including beneath the Naryn Valley in the central Tien Shan where previous studies reported a shallow Moho. This difference apparently is the result of wavespeed variations in the upper crust that were not previously taken into account. Finally, a high velocity lid appears in the upper mantle of the Central and Northern part of the Tien Shan, which we interpret as a remnant of material that may have delaminated elsewhere under the range. This is the final published version. It's also available from Oxford Journals at http://gji.oxfordjournals.org/content/199/1/480.full.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: Dis...

Cite this article