LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Muhyaldin, Siham
Languages: English
Types: Doctoral thesis
Subjects:
Erbium-doped fibre amplifiers (EDFA’s) are a key technology for the design of all optical communication systems and networks. The superiority of EDFAs lies in their negligible intermodulation distortion across high speed multichannel signals, low intrinsic losses, slow gain dynamics, and gain in a wide range of optical wavelengths. Due to long lifetime in excited states, EDFAs do not oppose the effect of cross-gain saturation. The time characteristics of the gain saturation and recovery effects are between a few hundred microseconds and 10 milliseconds. However, in wavelength division multiplexed (WDM) optical networks with EDFAs, the number of channels traversing an EDFA can change due to the faulty link of the network or the system reconfiguration. It has been found that, due to the variation in channel number in the EDFAs chain, the output system powers of surviving channels can change in a very short time. Thus, the power transient is one of the problems deteriorating system performance. In this thesis, the transient phenomenon in wavelength routed WDM optical networks with EDFA chains was investigated. The task was performed using different input signal powers for circuit switched networks. A simulator for the EDFA gain dynamicmodel was developed to compute the magnitude and speed of the power transients in the non-self-saturated EDFA both single and chained. The dynamic model of the self-saturated EDFAs chain and its simulator were also developed to compute the magnitude and speed of the power transients and the Optical signal-to-noise ratio (OSNR). We found that the OSNR transient magnitude and speed are a function of both the output power transient and the number of EDFAs in the chain. The OSNR value predicts the level of the quality of service in the related network. It was found that the power transients for both self-saturated and non-self-saturated EDFAs are close in magnitude in the case of gain saturated EDFAs networks. Moreover, the cross-gain saturation also degrades the performance of the packet switching networks due to varying traffic characteristics. The magnitude and the speed of output power transients increase along the EDFAs chain. An investigation was done on the asynchronous transfer mode (ATM) or the WDM Internet protocol (WDM-IP) traffic networks using different traffic patterns based on the Pareto and Poisson distribution. The simulator is used to examine the amount and speed of the power transients in Pareto and Poisson distributed traffic at different bit rates, with specific focus on 2.5 Gb/s. It was found from numerical and statistical analysis that the power swing increases if the time interval of theburst-ON/burst-OFF is long in the packet bursts. This is because the gain dynamics is fast during strong signal pulse or with long duration pulses, which is due to the stimulatedemission avalanche depletion of the excited ions. Thus, an increase in output power levelcould lead to error burst which affects the system performance.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2 Gain dynamic model of the EDFA 64 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.2 Erbium-doped fibre amplifier basics . . . . . . . . . . . . . . . . . . . . . 65 2.3 Gain dynamics model of single EDFA . . . . . . . . . . . . . . . . . . . . 71 2.4 EDFA dynamics model for OSNR investigation . . . . . . . . . . . . . . . 73 2.5 Properties of EDFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.6 Pump configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.7 Fibre lengths and geometries . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.8 EDFA effects on the dynamic phenomena in optical networks . . . . . . . . 88 2.9 Numerical simulation techniques . . . . . . . . . . . . . . . . . . . . . . . 91 2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
    • 4 Effect of Poisson traffic on EDFA transients 133 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.2 Traffic types and models . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.1 Poisson distribution traffic model . . . . . . . . . . . . . . . . . . 134 4.3 Impact of the Poisson traffic on the power transients of the EDFA . . . . . . 136 4.3.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3.2 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.3.2.1 Power transient numerical analysis . . . . . . . . . . . . 138 4.3.2.2 Power transient statistical analysis . . . . . . . . . . . . 140 4.4 Power transients at small signal power . . . . . . . . . . . . . . . . . . . . 145 4.4.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 145 4.4.2 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.4.2.1 Numerical analysis of the power transients . . . . . . . . 146 4.4.2.2 Statistical analysis of power transients . . . . . . . . . . 148 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
    • 6 Effect of power transients on optical receiver 196 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.2 Investigation of power and OSNR transients in cascades of EDFAs for optical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.2.1 Analysis of OSNR transients in EDFAs chain . . . . . . . . . . . . 199 6.2.2 Effect of power and OSNR transients of cascaded EDFAs on the optical receiver for WDM networks . . . . . . . . . . . . . . . . . 205 6.2.3 Effect of the abrupt input power on the power and OSNR transients in the EDFAs chain . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
    • 7 Gain Locking System for EDFA in WDM Optical Networks 212 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.2 PID controller for the EDFA . . . . . . . . . . . . . . . . . . . . . . . . . 213 7.3 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.4 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
    • 8 Conclusions and future work 238 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 B Appendix 265 B.1 Basic model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 B.1.1 Absorption and emission cross sections . . . . . . . . . . . . . . . 265 B.1.2 Amplified spontaneous emission(ASE) . . . . . . . . . . . . . . . 266 B.1.3 Overlap factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 B.1.4 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 B.1.5 Line-width and broadening . . . . . . . . . . . . . . . . . . . . . . 267 B.2 Gain model of EDFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 B.3 Gain dynamic model of EDFA . . . . . . . . . . . . . . . . . . . . . . . . 268 B.4 1 dB increase-time/decrease-time of OSNR . . . . . . . . . . . . . . . . . 271 [84] A. Bahrampoura, M. Mahjoeib, and A. Rasoulib, “A theoretical analysis of the effects of erbium ion pair on the dynamics of an optical gain stabilized fiber amplifier ,” Optics Communications, vol. 265, pp. 283-300, September 2006.
    • [86] R. M. Jopson and A. A. M. Saleh, “Modeling of Gain and Noise in Erbium-doped fiber Amplifier,” in Fiber Laser Sources and Amplifiers III, Proceeding SPIE, vol. 1581, pp. 114-119, 1991.
    • [87] T. Goerges and E. Delevaque, “Analytic Modelling of High-Gain Erbium-Doped Fiber Amplifiers,” Optics letters, vol. 14, pp. 1113-1115, August 1992.
    • [88] L. B. A. Bononi and L. A. Rusch, “Using SPICE to simulate gain dynamics in dopedfiber amplifier chains,” presented at OFC '98, workshop 204, Transmission modelling simulation tools, San Jose, CA, 1998.
    • [89] A. Rieznik, “Analytical solution for the dynamic behavior of erbium-doped fiber amplifiers with constant population inversion along the fiber,” Optical Society of America, vol. 21, October 2004.
    • [90] J. R. Simpson, “Fabrication of Rare-Earth Doped Glass Fiber. In Fiber Laser Sources and Amplifiers II,” 2.SPIE Proceeding, Bellingham, WA:SPIE, no. 1171, 1990.
    • [91] D. J. Digiovanni, “Fabrication of Rare-Earth Doped Optical Fiber. In Fiber Laser Sources and Amplifiers II,” 2.SPIE Proceeding, Bellingham, WA:SPIE, no. 1373, 1991.
    • [92] M. Shimizu and e. a. M. Yamada, “Erbium-doped amplifier s with an extremely high gain coefficient of 11.0 dB/mW,” Electronics Letters, vol. 26, no. 20, pp. 1641-1643, 1990.
    • [93] T. Kashiwada and e. a. M. Shigematsu, “Erbium-doped fiber amplifier pumped at 1.48 μm with extremely high efficiency,” Electronics Letters, vol. 3, no. 8, pp. 721-723, 1991.
    • [94] C. R. Giles, E. D. Desurvire, and e. a. J. R. Talman, “2-Gbit/s Signal Amplification at λ = 1.53 μm in an erbium-doped single-mode fiber amplifier,” IEEE Journal of Lightwave Technology, vol. 7, pp. 651-656, April 1989.
    • [95] V. J. Mazurczyk and J. L. Zykind, “Polarization dependent gain in erbium-doped amplifiers,” Photonics Technical Letter, vol. 6, no. 5, pp. 616-618, 1994.
    • [96] e. a. E. D. Desurvire, C. Randy Giles, “Gain Saturation Effects in high-speed multichannel erbium-doped fiber amplifiers at λ = 1.53 μm,” IEEE Journal of Lightwave Technology, vol. 7, no. 12, pp. 2095-2104, 1989.
    • [97] Y. Sun, A. M. Saleh, J. L. Zyskind, D. L. Wilson, and A. Srivastava, “Time Dependent Perturbation Theory and Tones in Cascaded Erbium-doped Fiber Amplifier Systems,” Journal of Lightwave Technology, vol. 15, pp. 1083-1087, July 1997.
    • [98] T. Chakma and D. Knipp, “Optical Signal to Noise Ratio (OSNR).” International University Bremen, 2005. International University Bremen, Course: Photonics and Optical Communication, http-www.faculty.iu-bremen.de-dknipp-c320352-ProjectsPresentationsTC
    • [99] M. Abramowitz and M. W. Davidson, “Microscope Objectives: Numerical Aperture and Resolution.” Wikipedia, April 22, 2004.
    • [100] E. D. Desurvire, “Analysis of Transient Gain Saturation and Recovery in ErbiumDoped Fibre Amplifiers,” IEEE Photonics Technology Letters, vol. 1, pp. 196-199, August 1989.
    • [101] Y. Sun and A. Srivastava, “Dynamic Effects in Optically Amplified Networks,” Conference on Optical Amplifiers and their Applications, OAA 97, Victoria, Canada, vol. 16, pp. 333-353, July 1997.
    • [102] C. R. Giles and E. Desurvire, “Propagation of Signal and Noise in Concatenated Erbium-doped Fiber Optical Amplifiers,” IEEE Journal of Lightwave Technology, vol. 9, pp. 147-154, February 1991.
    • [103] Y. Maigron and et al, “Analysis of a Cascaded EDFA Link Time Behaviour,” Proceeding ECOC'92, Germany, Paper WeP2, September 1992.
    • [104] C. Dimopoulos, D. Simeonidou, and et al., “Fast Optical Transient in Long-Haul WDM Fiber Networks: Is Optical Transient Suppression Always Necessary?,” Proceeding Networks and Optical Communication Conference (NOC 99) Netherlands, pp. 125-132, IOS Press, 1999.
    • [107] A. Bononi and L. A. Rusch, “Doped-Fiber Amplifier Dynamics: A System Perspective,” Journal of Lightwave Technology, vol. 16, pp. 945-956, May 1998.
    • [108] M. Menif, M. Karasek, K. Fouli, and L. A. Rusch, “Cross-gain Modulation Effect on the Behaviour of Packetized Cascaded EDFAs,” Journal of Optics: Pure and applied Optics, vol. 3, pp. 210-217, 2001. www.iop.org/Journals/oa.
    • [109] A. Bononi, L. Tancevski, and L. Rusch, “Large Power Swings in Doped-Fiber Amplifiers with Highly Variable Data,” IEEE Photonics Technology Letters, vol. 11, no. 1, pp. 131-133, 1999.
    • [110] B. I. L. M. Kopeetsky, Y.Ben-Ezra, “Influence of ATM/IP Traffic on Power Transients in the Optical Networks,” Journal of Optical Networks, vol. 4, pp. 82-91, 2005.
    • [111] W. E. Leland and et al, “On the Self-similar Nature of Ethernet Traffic,” IEEE/ACM Trans. networking, vol. 2, no. 1, pp. 1-15, 1994.
    • [112] J. Beran, M. S. T. R. Sherman, and W. Willinger, “Long-range Dependence in Variable-bit-rate Video traffic,” IEEE Trans. Communication, vol. 43, pp. 1566-1579, 1995.
    • [113] L. Tancevski, A. Bononi, and L. A. Rusch, “Output Power and SNR Swings in Cascades of EDFA's for Circuit- and Packet-Switched Optical Networks,” Journal of Lightwave Technology, vol. 17, pp. 733-742, May 1999.
    • [114] L. Tancevski, A. Bononi, and L. A. Rusch, “Large Power and SNR Swings in Cascaded EDFAs Carrying Highly Variable Traffic,” ECOC'98 Conference publication, pp. 553-554, Spain, 1998.
    • [115] S. A. T. W. H. Press, Numerical Recipes in C++, The Art of Scientific Computing. Cambridge University Press, ISBN:052175033 4, 2002.
    • [117] H. M. Antia, Numerical Methods for Scientists and Engineers. Second edition, Birkhause Verlag, 2002. ISBN: 3-7643-6715-6.
    • [118] J. L. Zachary, Introduction to Scientific Programming, Computational Problem Solving Using: Maple and C, Mathematica and C. http://www.cs.utah.edu/ zachary/IntroSciProg.html-online, Springer-Verlag New York, Inc., 1996. ISBN 0-387-94630-6.
    • [119] L. J. e. a. Y. Sun, “Analytical Formula for the Transient Response of Erbium-doped fiber Amplifiers,” Applied Optics, vol. 38, pp. 1682-1685, 20 March 1999.
    • [121] I. T. Mukai and etal, “Signal gain saturation in two channel common amplification using a 1.5 μm InGaAsP travelling-wave laser amplifier,” Electronics letters, vol. 23, pp. 396-397, 1987.
    • [122] A. H. M. J. Pettitt and et a, “Crosstalk in Erbium doped fibre amplifiers,” Electronics letters, vol. 25, no. 6, pp. 416-417, 1989.
    • [123] e. a. R. I. Laming, L. Reekie, “Multichannel crosstalk and pump noise characterisation of Er3+-doped fiber amplifier pumped at 980 nm,” Electronics letters, vol. 25, no. 7, pp. 455-456, 1989.
    • [124] B. J. J. Nilsson and et al, “Performance reduction and design modification of erbiumdoped fibre amplifiers resulting from pair-induced quenching,” IEEE Photonics Technology Letters, vol. 5, pp. 1427-1429, December 1993.
    • [125] M. Y. H. Ono and et al, “1.58 μm band gain flatted erbium-doped fiber amplifiers for WDM transmission systems,” Journal of lightwave Technology, vol. 17, pp. 490-496, March 1999.
    • [127] F. A. Flood, “Impact of inhomogeneous broadening on L-band EDFAs,” ECOC'99 Conference Proceeding, Nice, France, vol. 11, pp. 148-149, September 1999.
    • [128] F. A. Flood, “L-band erbium-doped fiber amplifiers,” OFC'2000 Technical Digest Baltimore, paper WG1, Maryland, March 2000.
    • [129] A. S. Y. Sun, J. L. Zyskind, “Average Inversion Level, Modelling, and Physics of Erbium-doped Fiber Amplifiers,” IEEE Journal of selected Topics In Quantum Electronics, vol. 3, pp. 991-1007, August 1997.
    • [130] A. J. L. A. T. Wu, “Efficient Multiwavelength Dynamic Model for Erbium-doped Fiber Amplifiers,” IEE Journals of Quantum Electronics, vol. 34, pp. 1325-1331, August 1998.
    • [131] M. Nakamura, Y. Imai, Y. umeda, J.Endo, and Y. Akatsu, “A Burst-mode Optical Receiver with High Sensitivity Using a PIN-PD for a 1.25 Gbit/s PON System,” OSA, vol. OFM6, no. 060.2340.060.4510, 2005.
    • [132] K. Schneider and H. Zimmermann, “Highly sensitive Wide-dynamic Range Optical Burst-mode Receivers for Ultra Fast Gain switching,” Analog Intergr Circ Sig Process, vol. 49, pp. 141-149, 2006.
    • [133] M. I. Products, “Accurately Estimating Optical Receiver Sensitivity,” Application Note: HFAN-3.0.0, Re.1, pp. 1-6, April 2008.
    • [134] M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a Fundamental Result in Selfsimilar Traffic Modelling,” Computer communication Review, vol. 27, pp. 5-23, April 1997.
    • [135] O. N. A. Erramili and W. Willinger, “Experimental Queuing Analysis with Longrange Dependent Packet Traffic,” IEEE/ACM trans. networking, vol. 4, pp. 209-223, April 1996.
    • [136] V. N. I. C. S. C. E. (SCEs), “Cisco Visual Networking Index: Usage Study.” CISCO, 2010. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705 /Cisco VNI Usage WP.html.
    • [137] L. K. Tee, “Packet Error Rate and Latency Requirements for a Mobile Wireless Access System in an IP Network,” Vehicular Technology Conference, VTC-2007, pp. 249- 253, Oct. 2007.
    • [138] J. E. Flood, Telecommunications Switching, Traffic and Networks. Prentice Hall, ISBN: 0-13-033309-3, 1999.
    • [139] L. T. A. Bononi and L. A. Rusch, “Fast dynamics and power swings in doped-fiber amplifiers fed by highly variable multimedia traffic,” Optical Fiber Communication conference, vol. 2, no. WM31, pp. 213-217, 1998.
    • [140] M. D. Prycker, Asynchronous Transfer Mode, Solution for Broadband ISDN. Prentice Hall, ISBN:0-13-342171-6, 1995.
    • [141] M. M. Ali and S. Nadarajah, “A Truncated Pareto Distribution,” Computer Communications, vol. 30, pp. 1-4, December 2006.
    • [142] V. Paxson and S. Floyd, “Wide-area Traffic: The Failure of Poisson Modelling,” IEEE/ACM Transaction on Networking, vol. 3, pp. 226-244, June 1995.
    • [143] W. willinger V. Paxson and M. S. Taqqu, Self-similarity and Heavy Tails: Structural Modeling of Network Traffic. In Practical Guide to Heavy Tails: Statistical Techniques and Applications. 1998.
    • [144] A. B. M. Crovella, “Self-Similarity in World WideWeb Traffic: Evidence and Possible Causes,” IEEE/ACM Transactions on Networkin, vol. 5, pp. 835-846, December 1997.
    • [145] M. Becchi, “From Poisson Process to self-Similarity: a Survey of Network Traffic Models.” http://www.cse.wustl.edu/ jain/cse567-06/traffic-modelsl.htm.
    • [146] L. Zaninetti and M. Ferraro, “On the Truncated Pareto Distribution with Applications,” Central European Journal of Physics, vol. 6, no. 1, pp. 1-6, 2008.
    • [147] M. W. Garrett and W. Willinger, “Analysis Modelling and Generation of Self-similar VBR Video Traffic,” in Proceeding SIGCOMM'94, pp. 269-280, 1994.
    • [148] K. Y. KO, M. S. Demokan, and H. Y. Tam, “Transient Analysis of Erbium-Doped Fiber Amplifiers,” IEEE Photonics Technology Letters, vol. 6, pp. 1436-1438, December 1994.
    • [149] J. A. Rice, Mathematical Statistics and Data Analysis. Duxbury Press, 2006.
    • [150] D. Yevick, “The Accuracy of Multicanonical System Models,” IEEE Photonics Technology Letters, vol. 15, pp. 224-226, February 2003.
    • [151] B. A. Berg, “Algorithmic Aspects of Multicanonical Simulations,” Nuclear Physics B (Proc suppl.) 63A-C, pp. 982-984, 1998.
    • [152] R. Hozlohner and C. R. Menyuk, “Use of Multicanonical Monte Carlo Simulations to Obtain Accurate Bit Error Rates in Optical Communications Systems,” Optics Letters, vol. 28, October 15 2003.
    • [153] e. a. C. Dimopoulos, D. Simeonidou, “Evolution of SNR during power transients in chains of saturated and gain equalized EDFAs,” Electronics Letters, vol. 35, pp. 1756- 1758, 30th September 1999.
    • [154] e. a. F. Forghieri, R. Tkach, “Simple model of optical amplifier chains to evaluate penalties in WDM systems,” Journal of Lightwave Technology, vol. 16, pp. 1570- 1576, 1998.
    • [155] D. Marcuse, “Derivation of analytical expression for the bit-error probability in lightwave systems with optical amplifiers,” Journal of Lightwave Technology, vol. 8, pp. 1816-1823, 1990.
    • [156] S. V. Kartalopoulos, “Optical Bit Error Rate, an estimation Methodology,” pp. chapter 7-9, 2004.
    • [158] R. S. W. W. Lin and B. Mumeya, “Decreasing EDFA transients by power shaping,” Optical Switching and Networking, vol. 5, pp. 188-195, October 2008.
    • [159] M. G. J. Gurfinkel, D. Sadot, “Dynamic control analysis for semiconductor optical amplifier dynamics in optical network applications,” Fiber Optics and Optical Communication, Opt. Eng., vol. 46, no. 3, 2007.
    • [160] M. Karasek and J. van der Plaats, “Analysis of Dynamic Pump-Loss Controlled GainLocking System for Erbium-Doped Fiber Amplifiers,” IEEE photonic technology letters, vol. 10, pp. 1171-1173, August 1998.
    • [161] M. Karasek and J. C. van der Plaats, “Modelling of a Pump-power-loss-controlled gain-locking system for EDFA application in WDM transmission systems,” IEE Proceeding Optoelectron, vol. 145, pp. 205-210, Augest 1998.
    • [162] A. Bononi, M. Papararo, and M. Fuochi, “Transient Gain Dynamics in saturated Raman Amplifiers,” Optical Fiber Technology, vol. 10, no. 1, pp. 91-123, 2004.
    • [163] M. Karasek, J. Kanka, D. Krcmarik, J. Radil, and J. Vojtech, “Surviving-ChannelPower Transients in Second-Order Pumped Lumped Raman Fiber Amplifier: Experimentation and Modeling,” Journal of Light Technology, vol. 25, no. 3, pp. 664-672, 2007.
    • [164] H. Krimmel, T. Pfeiffer, B. Deppisch, and L. Jentsch, “Hybrid Electro-Optical Feedback Gain-Stabilized EDFAs for Long-Reach Wavelength-Multiplexed Passive optical Networks,” ECOC2009, Vienna, Austria, September 2009.
    • [165] J. Shen, S. Wei, and C. Lin, “High Efficiency Automatic-Power Controlled and GainClamped EDFA for Broadband Passive Optical Networking Systems,” Journal of Infrared Milli Terahz Waves, vol. 31, pp. 490-499, January 2010.
    • [166] N. Vijayakumar and R. Sreeja, “A Feed Forward Method for Stabilizing the gain and output power of an Erbium-Doped Fiber Amplifier,” Microwave and Optical technology letters, vol. 51, pp. 2156-2160, September 2009.
    • [167] Y. Oikawa, Y. Horiuchi, Y. Tanaka, M. Shiga, and H. Nagaeda, “Super-Fast AGCEDFA for the Burst-Mode Systems without Gain Excursion in 20-ns and 21-dB Ramped Input,” OFC/NFOEC, vol. ThA15.pdf, 2008.
    • [168] T. Huang, L. Sheu, and S. Chi, “All-Optical Gain Clamped Erbium-Doped Fiber amplifier Using a DWDM Demultiplexer,” OFC/NFOEC2009, vol. ThLP16, 2009.
    • [169] H. Li, Y. Zhang, Y. C. Soh, and C. Wen, “Design and Analysis of Dynamic ErbiumDoped Fiber Amplifier Gain-Clamping Systems with Feedback Control,” Optical Society of America, vol. 24, pp. 1739-1748, August 2007.
    • [170] L.Rapp, “Transient Behaviour of EDFA Stages using Pump Power Splitting,” Journal of Lightwave technology, vol. 25, pp. 726-732, March 2007.
    • [171] M. A. Mahdi and F. M. Adikan, “Characterization of Lasing-oscillation Direction in Optical Gain-Clamped Erbium-Doped Fiber Amplifiers,” Optics and laser Technology, vol. 39, pp. 1020-1024, 2007.
    • [172] M. Ding and L. Pavel, “Gain Scheduling Control Design of an Erbium-Doped Fiber Amplifier by Pump Compensation,” Preceding of the 2005 IEEE conference on Control Applications, vol. MC4.6, pp. 510-516, 2005.
    • [173] “Matlab PID Controller,” Carnegie-Mellon-University, p. http://www.engin.umich.edu/group/ctm/PID/PID.html, 25th May 2010.
    • [174] J. G. Ziegler, N. B. Nichols, and N. Y. Rochester, “Optimum setting for Automatic Controller,” Transactions of the A.S.M.E, G. J. Dynamic. System Measurement Control, vol. 4, pp. 759-763, November 1942.
    • [175] M. Fukushima and J. Miura, “Recent Progress of Erbium-Doped Amplifiers and their Components,” Proceeding of SPIE, Active and Passive Components for Communications VII, vol. 6775, no. 677502, pp. 1-12, 2007.
    • [176] Motorola, “OA500 Series DWDM www.motorola.com/broadband, 2002.
    • [177] S. Pachnicke, P. M. Krummrich, E. Voges, and E. Gottwald, “Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control,” Journal of Optical Networking, vol. 6, no. 9, pp. 1129-1137, 2007.
    • [178] S. Pachnicke, M. Obholz, E. Voges, P. M. Krummrich, and E. Gottwald, “Electronic EDFA gain Control for the suppression of transient gain dynamics in long-haul transmission systems,” Optical society America, no. 1-55752-830-6, 2006.
    • [179] C.R.Yang, H. Y. H. Wang, and H. Hong, “A gain-Clamped Erbium-Doped Fibre Amplifier (CG-EDFA) for WDM Optical Packet-Switching System,” Microwave and Optical Technology Letters, vol. 32, pp. 316-319, February 2002.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article