LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cameron, Robert Peter; Barnett, Steve (2014)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:
We observe that optical activity in light scattering can be probed using types of illuminating light other than single plane (or quasi plane) waves and that this introduces new possibilities for the study of molecules and atoms. We demonstrate this explicitly for natural Rayleigh optical activity which, we suggest, could be exploited as a new form of spectroscopy for chiral molecules through the use of illuminating light comprised of two plane waves that are counter propagating.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 P. W. Atkins and L. D. Barron, Rayleigh scattering of polarized photons by molecules, Mol. Phys., 1969, 16, 453-466.
    • 2 L. D. Barron and A. D. Buckingham, Rayleigh and Raman scattering from optically active molecules, Mol. Phys., 1971, 20, 1111-1119.
    • 3 D. L. Andrews, Rayleigh and Raman optical activity: An analysis of the dependence on scattering angle, J. Chem. Phys., 1980, 72, 4141-4144.
    • 4 D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation Molecule Interactions, Dover, New York, 1998.
    • 5 L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, 2004.
    • 6 L. D. Barron and A. D. Buckingham, Rayleigh and Raman scattering by molecules in magnetic fields, Mol. Phys., 1972, 23, 145-150.
    • 7 A. D. Buckingham and R. E. Raab, Electric-field-induced differential scattering of right and left circularly polarized light, Proc. R. Soc. London, Ser. A, 1975, 345, 365-377.
    • 8 L. D. Barron, M. P. Bogaard and A. D. Buckingham, Raman scattering of circularly polarized light by optically active molecules, J. Am. Chem. Soc., 1973, 95, 603-605.
    • 9 L. D. Barron, Magnetic vibrational optical activity in the resonance Raman spectrum of ferrocytochrome c, Nature, 1975, 257, 372-374.
    • 10 A. D. Buckingham and R. A. Shatwell, Linear electro-optic effect in gases, Phys. Rev. Lett., 1980, 45, 21-25.
    • 11 L. D. Barron, F. Zhu, L. Hecht, G. E. Tranter and N. W. Isaacs, Raman optical activity: An incisive probe of molecular chirality and biomolecular structure, J. Mol. Struct., 2007, 834, 7-16.
    • 12 L. D. Barron and A. D. Buckingham, Vibrational optical activity, Chem. Phys. Lett., 2010, 492, 199-213.
    • 13 Private communication with Laurence D Barron.
    • 14 G. Zu┬Ęber, P. Wipf and D. N. Beratan, Exploring the optical activity tensor by anisotropic Rayleigh optical activity scattering, ChemPhysChem, 2008, 9, 265-271.
    • 15 J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1999.
    • 16 S. M. Barnett, Rotation of electromagnetic fields and the nature of optical angular momentum, J. Mod. Opt., 2010, 57, 1339-1343.
    • 17 S. M. Barnett, R. P. Cameron and A. M. Yao, Duplex symmetry and its relation to the conservation of optical helicity, Phys. Rev. A: At., Mol., Opt. Phys., 2012, 86, 013845.
    • 18 R. P. Cameron, S. M. Barnett and A. M. Yao, Optical helicity, optical spin and related quantities in electromagnetic theory, New J. Phys., 2012, 14, 053050.
    • 19 S. J. van Enk and G. Nienhuis, Spin and orbital angular momentum of photons, Europhys. Lett., 1994, 25, 497-501.
    • 20 S. J. van Enk and G. Nienhuis, Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields, J. Mod. Opt., 1994, 41, 963-977.
    • 21 R. P. Cameron and S. M. Barnett, Electric-magnetic symmetry and Noether's theorem, New J. Phys., 2012, 14, 123019.
    • 22 R. P. Cameron, S. M. Barnett and A. M. Yao, Optical helicity of interfering waves, J. Mod. Opt., 2014, 61, 25-31.
    • 23 M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana and I. Tinoco, Differential scattering of circularly polarized light by the helical sperm head of the octopus Eledone cirrhosa, Nature, 1982, 298, 773-774.
    • 24 Y. Tang and A. E. Cohen, Optical chirality and its interaction with matter, Phys. Rev. Lett., 2010, 104, 163901.
    • 25 Y. Tang and A. E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light, Science, 2011, 332, 333-336.
    • 26 Y. Aharonov, F. Colombo, I. Sabadini and J. Tollaksen, Some mathematical properties of superoscillations, J. Phys. A: Math. Theor., 2011, 44, 365304.
    • 27 J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models, J. Opt. Soc. Am. B, 1989, 6, 2023-2045.
    • 28 H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Cambridge University Press, Cambridge, 1915.
    • 29 R. P. Cameron, On the 'second potential' in electrodynamics, J. Opt., 2014, 16, 015708.
    • 30 S. Guy, L. Guy, A. Bensalah-Ledoux, A. Pereira, V. Grenard, O. Cosso and T. Vautey, Pure organic thin films with high isotropic optical activity synthesised by UV pulsed laser deposition, J. Mater. Chem., 2009, 19, 7093-7097.
    • 31 L. Hecht and L. D. Barron, Rayleigh and Raman optical activity from chiral surfaces, Chem. Phys. Lett., 1994, 225, 525-530.
    • 32 D. J. Candlin, Analysis of the new conservation law in electromagnetic theory, II Nuovo Cimento, 1965, 37, 1390-1395.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    56
    56%
  • No similar publications.

Share - Bookmark

Cite this article