LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lacinska, Alicja M.; Styles, Michael T.; Bateman, Keith; Wagner, Doris; Hall, Matthew R.; Gowing, Charles; Brown, Paul D. (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
Serpentine minerals serve as a Mg donor in carbon capture and storage by mineralisation (CCSM). The acid-treatment of nine comprehensively-examined serpentine polymorphs and polytypes, and the subsequent microanalysis of their post-test residues highlighted several aspects of great importance to the choice of the optimal feed material for CCSM. Compelling evidence for the non-uniformity of serpentine mineral performance was revealed, and the following order of increasing Mg extraction efficiency after three hours of acid-leaching was established: Al-bearing polygonal serpentine (<5%) ≤ Al-bearing lizardite 1T (≈5%) < antigorite (24-29%) < well-ordered lizardite 2H1 (≈65%) ≤ Al-poor lizardite 1T (≈68%) < chrysotile (≈70%) < poorly-ordered lizardite 2H1 (≈80%) < nanotubular chrysotile (≈85%).\ud It was recognised that the Mg extraction efficiency of the minerals depended greatly on the intrinsic properties of crystal structure, chemistry and rock microtexture. On this basis, antigorite and Al-bearing well-ordered lizardite were rejected as potential feedstock material whereas any chrysotile, non-aluminous, widely spaced lizardite and/or disordered serpentine were recommended.\ud The formation of peripheral siliceous layers, tens of microns thick, was not universal and depended greatly upon the intrinsic microtexture of the leached particles. This study provides the first comprehensive investigation of nine, carefully-selected serpentine minerals, covering most varieties and polytypes, under the same experimental conditions. We focused on material characterisation and the identification of the intrinsic properties of the minerals that affect particle’s reactivity. It can therefore serve as a generic basis for any acid-based CCSM pre-treatment.

Share - Bookmark

Cite this article