LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Scott, James F.; Evans, Donald M.; Gregg, J. Marty; Gruverman, Alexei (2016)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC Physics, QC, Ferroelastics, Domains, Hydrodynamics, sub-03, Multiferroics, Condensed Matter - Materials Science

Classified by OpenAIRE into

arxiv: Condensed Matter::Materials Science, Physics::Fluid Dynamics
Identifiers:doi:10.1063/1.4959996
We show that switching in ferroelectric lead germanate and lead iron tantalate zirconate titanate (PZTFT) does not resemble the equilibrium domain structure evolution of the Landau-Lifshitz-Kittel model but is instead highly nonequilibrium and similar, respectively, to the Richtmyer-Meshkov instability in liquids and the Helfrich-Hursault sliding instability in liquid crystals. The resulting nano-domain structures in PZTFT are circular or parabolic and involving folding bifurcations. These may have an undesirable impact on ferroelectric thin-film memoriesthat are also ferroelastic.
  • No references.
  • No related research data.
  • No similar publications.