LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Haenschel, C.; Linden, D. (2011)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: RC0321, BF
This review brings together two strands of investigation in the neuropsychology and neurophysiology of schizophrenia that have been particularly productive over the last 20 years. We review the literature on working memory deficits, particularly in the visual domain, and changes in oscillatory neural activity as measured with electroencephalography (EEG) and magnetoencephalography (MEG). We argue that recent results suggest a link between these two phenomena, in that altered oscillations underlie some of the working memory deficits. We furthermore argue that early sensory mechanisms contribute more to working memory (and other) deficits than previously thought. The final part of our review suggests links between working memory, oscillations, and their alterations in schizophrenia and the dopamine, GABA, glutamate and acetylcholine system. These links have already resulted in the development of new remediation strategies, which have some translational potential.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] R. Adcock, C. Dale, M. Fisher, S. Aldebot, A. Genevsky, G. Simpson, S. Nagarajan, S.
    • Vinogradov, When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia., Schizophr Bull 35 (2009) 1132-1141.
    • C.M. Adler, T.E. Goldberg, A.K. Malhotra, D. Pickar, A. Breier, Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers, Biological psychiatry 43 (1998) 811-816.
    • L.E. Adler, L.D. Hoffer, A. Wiser, R. Freedman, Normalization of auditory physiology by cigarette smoking in schizophrenic patients, Am J Psychiatry 150 (1993) 1856-1861.
    • N.C. Andreasen, A unitary model of schizophrenia: Bleuler's "fragmented phrene" as schizencephaly, Arch Gen Psychiatry 56 (1999) 781-787.
    • N. Axmacher, M. Henseler, O. Jensen, I. Weinreich, C. Elger, J. Fell, Cross-frequency coupling supports multi-item working memory in the human hippocampus., Proc Natl Acad Sci U S A 107 (2010) 3228-3233.
    • N. Axmacher, F. Mormann, G. Fernandez, M.X. Cohen, C.E. Elger, J. Fell, Sustained neural activity patterns during working memory in the human medial temporal lobe, J Neurosci 27 (2007) 7807-7816.
    • Näätänen, T. Cannon, Abnormally high EEG alpha synchrony during working memory maintenance in twins discordant for schizophrenia., Schizophr Res 103 (2008) 293-297.
    • J.C. Badcock, D.R. Badcock, C. Read, A. Jablensky, Examining encoding imprecision in spatial working memory in schizophrenia, Schizophr Res 100 (2008) 144-152.
    • A.D. Baddeley, Working Memory Oxford University Press, London, 1986.
    • T. Baldeweg, A. Klugman, J. Gruzelier, S. Hirsch, Mismatch negativity potentials and cognitive impairment in schizophrenia., Schizophr Res 69 (2004) 203-217.
    • T. Baldeweg, D. Wong, K. Stephan, Nicotinic modulation of human auditory sensory memory: Evidence from mismatch negativity potentials., Int J Psychophysiol 59 (2006) 49-58.
    • M. Bar, A cortical mechanism for triggering top-down facilitation in visual object recognition., J Cogn Neurosci 15 (2003) 600-609.
    • C. Barros, B. Calabrese, P. Chamero, A. Roberts, E. Korzus, K. Lloyd, L. Stowers, M. Mayford, S. Halpain, U. Müller, Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system., Proc Natl Acad Sci U S A 106 (2009) 4507-4512.
    • C. Basar-Eroglu, A. Brand, H. Hildebrandt, K. Karolina Kedzior, B. Mathes, C. Schmiedt, Working memory related gamma oscillations in schizophrenia patients, Int J Psychophysiol 64 (2007) 39-45.
    • D. Bassett, E. Bullmore, A. Meyer-Lindenberg, J. Apud, D. Weinberger, R. Coppola, Cognitive fitness of cost-efficient brain functional networks., Proc Natl Acad Sci U S A 106 (2009) 11747-11752.
    • F. Benes, Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else?, Biol Psychiatry 65 (2009) 1003-1005.
    • F.M. Benes, S. Berretta, GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder, Neuropsychopharmacology 25 (2001) 1-27.
    • A. Berry, T. Zanto, W. Clapp, J. Hardy, P. Delahunt, H. Mahncke, A. Gazzaley, The influence of perceptual training on working memory in older adults., PLoS One 5 (2010) e11537.
    • M. Blatow, A. Rozov, I. Katona, S. Hormuzdi, A. Meyer, M. Whittington, A. Caputi, H. Monyer, A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex., Neuron 38 (2003) 805-817.
    • S.D. Braff DL, Geyer MA, Information processing dysfunctions in schizophrenia: Studies of visual backward masking, sensorimotor gating, and habituation. In: G.J. Steinhauer SR, Zubin 31 [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [71] [72] [73] [74] [75] [76] [77] [78] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] D. Jokisch, O. Jensen, Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream, J Neurosci 27 (2007) 3244-3251.
    • [100] P. Jolicoeur, R. Dell'Acqua, The demonstration of short-term consolidation., Cogn Psychol 36 (1998) 138-202.
    • [101] J. Kaiser, B. Ripper, N. Birbaumer, W. Lutzenberger, Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory, NeuroImage 20 (2003) 816-827.
    • [102] J. Kantrowitz, D. Javitt, N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: The final common pathway on the road to schizophrenia?, Brain Res Bull (2010).
    • [103] C. Kentros, E. Hargreaves, R. Hawkins, E. Kandel, M. Shapiro, R. Muller, Abolition of longterm stability of new hippocampal place cell maps by NMDA receptor blockade., Science 280 (1998) 2121-2126.
    • [104] J. Kim, J. Kwon, H. Park, T. Youn, D. Kang, M. Kim, D. Lee, M. Lee, Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a[15(O)]H2O PET study., Am J Psychiatry 160 (2003) 919-923.
    • [105] W. Klimesch, B. Schack, M. Schabus, M. Doppelmayr, W. Gruber, P. Sauseng, Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance, Brain Res Cogn Brain Res 19 (2004) 302-316.
    • [106] T. Klingberg, Training and plasticity of working memory., Trends Cogn Sci 14 (2010) 317-324.
    • [107] R. Knight, D. Elliott, E. Freedman, Short-term visual memory in schizophrenics., J Abnorm Psychol 94 (1985) 427-442.
    • [108] N. Kopell, G.B. Ermentrout, M.A. Whittington, R.D. Traub, Gamma rhythms and beta rhythms have different synchronization properties, Proceedings of the National Academy of Sciences of the United States of America 97 (2000) 1867-1872.
    • [109] I. Koychev, W. El-Deredy, C. Haenschel, J. Deakin, Visual information processing deficits as biomarkers of vulnerability to schizophrenia: an event-related potential study in schizotypy., Neuropsychologia 48 (2010) 2205-2214.
    • [110] I. Krenz, D. Kalkan, A. Wevers, R. de Vos, E. Steur, J. Lindstrom, K. Pilz, S. Nowacki, U. Schütz, N. Moser, B. Witter, H. Schröder, Parvalbumin-containing interneurons of the human cerebral cortex express nicotinic acetylcholine receptor proteins., J Chem Neuroanat 21 (2001) 239-246.
    • [111] G.P. Krishnan, J.L. Vohs, W.P. Hetrick, C.A. Carroll, A. Shekhar, M.A. Bockbrader, B.F. O'Donnell, Steady state visual evoked potential abnormalities in schizophrenia, Clin Neurophysiol 116 (2005) 614-624.
    • [112] J. Kulikowski, Neural basis of fundamental filters in vision Vol. 334, NATO Science Series, 2003, pp. 3-68.
    • [113] V. Kumari, J. Gray, D. ffytche, M. Mitterschiffthaler, M. Das, E. Zachariah, G. Vythelingum, S. Williams, A. Simmons, T. Sharma, Cognitive effects of nicotine in humans: an fMRI study., Neuroimage 19 (2003) 1002-1013.
    • [114] K. Kveraga, J. Boshyan, M. Bar, Magnocellular projections as the trigger of top-down facilitation in recognition., J Neurosci 27 (2007) 13232-13240.
    • [115] J.S. Kwon, B.F. O'Donnell, G.V. Wallenstein, R.W. Greene, Y. Hirayasu, P.G. Nestor, M.E. Hasselmo, G.F. Potts, M.E. Shenton, R.W. McCarley, Gamma frequency-range abnormalities to auditory stimulation in schizophrenia, Arch Gen Psychiatry 56 (1999) 1001-1005.
    • [116] J.P. Lachaux, N. George, C. Tallon-Baudry, J. Martinerie, L. Hugueville, L. Minotti, P. Kahane, B. Renault, The many faces of the gamma band response to complex visual stimuli, Neuroimage 25 (2005) 491-501.
    • [117] P. Lakatos, M. O'Connell, A. Barczak, A. Mills, D. Javitt, C. Schroeder, The leading sense: supramodal control of neurophysiological context by attention., Neuron 64 (2009) 419-430.
    • [118] N. Lawrence, T. Ross, E. Stein, Cognitive mechanisms of nicotine on visual attention., Neuron 36 (2002) 539-548.
    • [119] M. Lazarewicz, R. Ehrlichman, C. Maxwell, M. Gandal, L. Finkel, S. Siegel, Ketamine modulates theta and gamma oscillations., J Cogn Neurosci 22 (2010) 1452-1464.
    • [120] J. Lee, S. Park, Working memory impairments in schizophrenia: a meta-analysis, J Abnorm Psychol 114 (2005) 599-611.
    • [121] K.H. Lee, L.M. Williams, M. Breakspear, E. Gordon, Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia, Brain Res Brain Res Rev 41 (2003) 57-78.
    • [122] V. Leeson, T. Barnes, S. Hutton, M. Ron, E. Joyce, IQ as a predictor of functional outcome in schizophrenia: a longitudinal, four-year study of first-episode psychosis., Schizophr Res 107 (2009) 55-60.
    • [123] T. Lencz, R.M. Bilder, E. Turkel, R.S. Goldman, D. Robinson, J.M. Kane, J.A. Lieberman, Impairments in perceptual competency and maintenance on a visual delayed match-tosample test in first-episode schizophrenia, Arch Gen Psychiatry 60 (2003) 238-243.
    • [124] E. Levin, Nicotinic receptor subtypes and cognitive function., J Neurobiol 53 (2002) 633-640.
    • [125] E. Levin, W. Wilson, J. Rose, J. McEvoy, Nicotine-haloperidol interactions and cognitive performance in schizophrenics., Neuropsychopharmacology 15 (1996) 429-436.
    • [126] D. Lewis, Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia., Dialogues Clin Neurosci 11 (2009) 269-280.
    • [127] D. Lewis, R. Cho, C. Carter, K. Eklund, S. Forster, M. Kelly, D. Montrose, Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia., Am J Psychiatry 165 (2008) 1585-1593.
    • [128] D. Lewis, G. González-Burgos, Neuroplasticity of neocortical circuits in schizophrenia., Neuropsychopharmacology 33 (2008) 141-165.
    • [129] D. Lewis, P. Levitt, Schizophrenia as a disorder of neurodevelopment., Annu Rev Neurosci 25 (2002) 409-432.
    • [130] D.A. Lewis, T. Hashimoto, D.W. Volk, Cortical inhibitory neurons and schizophrenia, Nat Rev Neurosci 6 (2005) 312-324.
    • [131] D.A. Lewis, D.W. Volk, T. Hashimoto, Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction, Psychopharmacology 174 (2004) 143-150.
    • [132] G. Light, J. Hsu, M. Hsieh, K. Meyer-Gomes, J. Sprock, N. Swerdlow, D. Braff, Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients., Biol Psychiatry 60 (2006) 1231-1240.
    • [133] D.E. Linden, R.A. Bittner, L. Muckli, J.A. Waltz, N. Kriegeskorte, R. Goebel, W. Singer, M.H. Munk, Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network, Neuroimage 20 (2003) 1518-1530.
    • [134] J. Lisman, J. Coyle, R. Green, D. Javitt, F. Benes, S. Heckers, A. Grace, Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia., Trends Neurosci 31 (2008) 234-242.
    • [135] J.E. Lisman, M.A. Idiart, Storage of 7 +/- 2 short-term memories in oscillatory subcycles, Science (New York, N.Y 267 (1995) 1512-1515.
    • [136] S. Luck, J. Gold, The construct of attention in schizophrenia., Biol Psychiatry 64 (2008) 34-39.
    • [137] S. Luck, E. Vogel, The capacity of visual working memory for features and conjunctions., Nature 390 (1997) 279-281.
    • [138] N. Mainy, P. Kahane, L. Minotti, D. Hoffmann, O. Bertrand, J.P. Lachaux, Neural correlates of consolidation in working memory, Hum Brain Mapp 28 (2007) 183-193.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    70
    70%
  • No similar publications.

Share - Bookmark

Cite this article