LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Stec, Helena M.
Languages: English
Types: Doctoral thesis
Subjects: QD, TK
The work presented in this thesis focuses on the development ultra-thin metal film\ud electrodes for organic photovoltaics (OPVs) with the aim of boosting device\ud performance, lowering the cost and/or extending the range potential application.\ud Chapter 1 gives a general overview of OPVs, including the materials used for\ud their fabrication and the fundamental processes underpinning OPV’s operation. The\ud experimental techniques and equipment used are described in Chapter 2. Chapter 3\ud describes the development of a solvent free method for the fabrication of highly\ud transparent ultra-thin Au films on glass based on co-deposition of a mixed molecular\ud adhesive layer prior to Au thermal evaporation. By integrating microsphere\ud lithography into the fabrication process the transparency could be improved via the\ud incorporation of a random array of micron-sized circular apertures into the film. In\ud Chapter 4 it is shown that these films are amenable to rapid thermal annealing to\ud realise highly crystalline window electrodes with improved transparency and\ud conductivity. By capping these films with a very thin transition metal oxide layer\ud their thermal stability can be dramatically improved, whilst at the same time\ud improving their far field transparency. In Chapter 5 the molecular adhesive method\ud for the fabrication of ultra-thin Au films on glass is translated to the technologically\ud important flexible substrates and extended to the lower cost coinage metals Ag and\ud Cu. In Chapter 6 a lithography-free approach to fabricating thin Au and Ag films\ud with a dense array of sub-wavelength apertures is reported. These electrodes support\ud surface plasmon resonances which couple strongly with visible light concentrating it\ud near to the electrode surface, thereby increasing light harvesting. Chapter 7 shows\ud how the electrodes developed in Chapter 3 can be used to investigate a fundamental\ud question of importance in OPV research and indicates the direction of future work.\ud The results of chapters 3, 5 and 6 have been published in peer reviewed scientific\ud journals.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. http://www.eia.gov/forecasts/ieo/ Accessed December, 2012.
    • 2. G. Maggio; G. Cacciola, Fuel 2012, 98, 111-123.
    • 3. I. S. Nashawi; A. Malallah; M. Al-Bisharah, Energy & Fuels 2010, 24, 1788- 1800.
    • 4. http://www.un-energy.org/sites/default/files/share/une/ren21_gsr2011.pdf Accessed December, 2012.
    • 5. J. S. Kim; M. Granstrom; R. H. Friend; N. Johansson; W. R. Salaneck; R. Daik; W. J. Feast; F. Cacialli, J. Appl. Phys. 1998, 84, (12), 6859-6870.
    • 6. Q. Volker, Renewable energy and climate change, Wiley: Chichester, 2010.
    • 7. http://www.map.ren21.net/GSR/GSR2012_low.pdf Accessed January, 2013.
    • 8. http://unisolar.com.ua/wp-content/uploads/2012/02/EPIA-market-report2011.pdf Accessed December, 2012.
    • 9. K. Kawajiri; T. Oozeki; Y. Genchi, Environ. Sci. Technol. 2011, 45, (20), 9030-9035.
    • 10. http://www.renewableenergyworld.com/rea/news/article/2012/03/germanysofficial-2011-solar-pv-stats-where-growth-is-happening Accessed November, 2012.
    • 11. P. Peumans; S. Uchida; S. R. Forrest, Nature 2003, 425, (6954), 158-162.
    • 12. M. Riede; C. Uhrich; J. Widmer; R. Timmreck; D. Wynands; G. Schwartz; W. M. Gnehr; D. Hildebrandt; A. Weiss; J. Hwang; S. Sundarraj; P. Erk; M. Pfeiffer; K. Leo, Adv. Funct. Mater. 2011, 21, (16), 3019-3028.
    • 13. G. D. Sharma; J. A. Mikroyannidis; S. S. Sharma; M. S. Roy; K. R. J. Thomas, Org. Electron. 2012, 13, (4), 652-666.
    • 14. A. Tada; Y. Geng; Q. Wei; K. Hashimoto; K. Tajima, Nat. Mater. 2011, 10, (6), 450-455.
    • 15. D. H. Wang; K. H. Park; J. H. Seo; J. Seifter; J. H. Jeon; J. K. Kim; J. H. Park; O. O. Park; A. J. Heeger, Adv. Energy Mater. 2011, 1, (5), 766-770.
    • 16. Z. M. Beiley; E. T. Hoke; R. Noriega; J. Dacuna; G. F. Burkhard; J. A. Bartelt; A. Salleo; M. F. Toney; M. D. McGehee, Adv. Energy Mater. 2011, 1, (5), 954-962.
    • 17. Y. F. Lim; Y. Shu; S. R. Parkin; J. E. Anthony; G. G. Malliaras, J. Mater. Chem. 2009, 19, (19), 3049-3056.
    • 18. P. Sullivan; A. Duraud; I. Hancox; N. Beaumont; G. Mirri; J. H. R. Tucker; R. A. Hatton; M. Shipman; T. S. Jones, Adv. Energy Mater. 2011, 1, (3), 352-355.
    • 19. T. Ameri; G. Dennler; C. Lungenschmied; C. J. Brabec, Energy Environ. Sci. 2009, 2, (4), 347-363.
    • 20. S. R. Forrest, Nature 2004, 428, (6986), 911-918.
    • 21. N. Espinosa; M. Hosel; D. Angmo; F. C. Krebs, Energy Environ. Sci. 2012, 5, (1), 5117-5132.
    • 22. A. McEvoy;; T. Markvart;; L. Castaner, Practical Hanbook of Photovoltaics Fundamentals and Applications, Elsevier: Walham, USA, 2012.
    • 23. C. Kittel, Introduction to Solid state physics, Wiley: Hoboken, USA, 2005.
    • 24. J. R. Hook, H. E. Hall, Solid State Physics, John Wiley & Sons Ltd.: Chichester, 1997.
    • 25. J. Nelson, Physics of solar cells, Imperial College Press: London, 2008.
    • 26. B. P. Rand; J. Genoe; P. Heremans; J. Poortmans, Prog. Photovoltaics 2007, 15, (8), 659-676.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article