Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bulat, P.V.; Ilyina, T.E.; Volkov, K.N.; Silnikov, M.V.; Chernyshov, M.V. (2017)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: mechanical

Classified by OpenAIRE into

arxiv: Astrophysics::Galaxy Astrophysics, Physics::Fluid Dynamics
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Gelfand B.E., Silnikov M.V., Chernyshov M.V. On the efficiency of semi-closed blast inhibitors. Shock Waves, 2010, 20(4), 317-321.
    • 2. Khomik S.V., Veyssiere B., Medvedev S.P., Montassier V., Agafonov G.L., Silnikov M.V. On some conditions for detonation initiation downstream of a perforated plate. Shock Waves, 2013, 23(3), 207-211.
    • 3. Smirnov N.N., Betelin V.B., Nikitin V.F., Phylippov Yu.G., Jaye Koo. Detonation engine fed by acetylene-oxygen mixture. Acta Astronautica, 2014, 104, 134-146.
    • 4. Smirnov N.N., Phylippov Yu.G., Nikitin V.F., Silnikov M.V. Modeling of combustion in engines fed by hydrogen. WSEAS Transactions on Fluid Mechanics, 2014, 9, 154-167.
    • 5. Smirnov N.N., Nikitin V.F., Alyari Shurekhdeli S. Investigation of self-sustaining waves in metastable systems: deflagration-to-detonation transition. Journal of Propulsion and Power, 2009, 25(3), 593-608. 12
    • 6. Betelin V.B., Smirnov N.N., Nikitin V.F., Dushin V.R., Kushnirenko A.G., Nerchenko V.A. Evaporation and ignition of droplets in combustion chambers modeling and simulation. Acta Astronautica, 2012, 70, 23-35.
    • 7. Smirnov N.N., Betelin V.B., Kushnirenko A.G., Nikitin V.F., Dushin V.R., Nerchenko V.A. Ignition of fuel sprays by shock wave mathematical modeling and numerical simulation. Acta Astronautica, 2013, 87, 14-29.
    • 8. Smirnov N.N., Nikitin V.F., Dushin V.R., Filippov Yu.G., Nerchenko V.A., Javad Khadem. Combustion onset in non-uniform dispersed mixtures. Acta Astronautica, 2015, 115, 94-101.
    • 9. Shotorban B., Jacobs G.B., Ortiz O., Truong Q. An Eulerian model for particles nonisothermally carried by a compressible fluid. International Journal of Heat and Mass Transfer, 2013, 65, 845-854.
    • 10. Papalexandris M.V. Numerical simulation of detonations in mixtures of gases and solid particles. Journal of Fluid Mechanics, 2004, 507, 95-142.
    • 11. Benkiewicz K., Hayashi A.K. Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement. Shock Waves, 2003, 13(5), 385-402.
    • 12. Kutushev A.G., Rodionov S.P. Interaction of weak shock waves with a layer of powdered medium. Combustion, Explosion and Shock Waves, 2000, 36(3), 131-140.
    • 13. Loth E., Sivier S., Baum J. Dusty detonation simulations with adaptive unstructured finite elements. AIAA Journal, 1997, 35(6), 1018-1024.
    • 14. Veyssiere B., Bozier O., Khasainov B.A. Effect of a suspension of magnesium particles on the detonation characteristics of methane-oxygen-nitrogen mixtures at elevated initial pressures. Shock Waves, 2002, 12(3), 227-233.
    • 15. Zhang F., Frost D.L., Thibault P.A., Murray S.B. Explosive dispersal of solid particles.ShockWaves, 2001, 10(6), 431-443.
    • 16. Tsuboi N., Hayashi A.K.., Matsumoto Y. Three-dimensional parallel simulation of cornstarch-oxygen two-phase detonation. Shock Waves, 2000, 10(4), 277-285.
    • 17. Gentry R.A., Martin R.E., Daly B.J. An Eulerian differencing method for unsteady compressible flow problems. Journal of Computational Physics, 1966, 1(1), 87-118.
    • 18. Jacobs G.B., Don W.S. A high-order weno-z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks. Journal of Computational Physics, 2009, 228(5), 1365-1379.
    • 19. Sengupta K., Shotorban B., Jacobs G.B., Mashayek F. Spectral-based simulations of particleladen turbulent flows. International Journal of Multiphase Flow, 2009, 35(9), 811-826.
    • 20. Montagne J.L., Yee H.C., Vinokur M. Comparative study of high-resolution shock-capturing schemes for a real gas. AIAA Journal, 1989, 27(10), 1332-1346.
    • 21. Boiko V.M., Kiselev V.P., Kiselev S.P., Papyrin A.N., Poplavskii S.V., Fomin V.M. Interaction of a shock wave with a cloud of particles. Combustion, Explosion and Shock Waves, 1996, 32(2), 191-203.
    • 22. Kiselev V.P., Kiselev S.P. Lifting of dust particles behind a reflected shock wave sliding above a particle layer. Journal of Applied Mechanics and Technical Physics, 2001, 42(5), 741-747.
    • 23. Wang B.Y., Wu Q.S., Wang C., Igra O., Falcovitz J. Shock wave diffraction by a cavity filled with dusty gas. Shock Waves, 2001, 11(1), 7-14.
    • 24. Kutushev A.G., Shorokhova L.V. Numerical investigation of the processes of combustion and detonation of air-fuel mixtures of unitary fuel in abruptly expanding pipes. Chemical Physics, 2003, 22(8), 94-99.
    • 25. Khmel T.A., Fedorov A.V. Numerical technologies for investigations of heterogeneous detonations of gas particle suspensions. Mathematical Modelling, 2006, 18(8), 49-63.
    • 26. Pandya R.V.R., Mashayek F. Two-fluid large-eddy simulation approach for particle-laden turbulent flows. International Journal of Heat and Mass Transfer, 2002, 45(24), 4753-4759.
    • 27. Shotorban B. Preliminary assessment of two-fluid model for direct numerical simulation of particle-laden flows. AIAA Journal, 2011, 49(2), 438-443.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article