LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lind, Steven John
Languages: English
Types: Doctoral thesis
Subjects: QA

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
In this thesis two different models and numerical methods have been developed to investigate the dynamics of bubbles in viscoelastic fluids. In the interests of gaining crucial initial insights, a simplifed system of governing equations is first considered. The ambient fluid around the bubble is considered incompressible and the flow irrotational. Viscoelastic effects are included through the normal stress balance at the bubble surface. The governing equations are then solved using a boundary element method. With regard to spherical bubble collapse, the model captures the behaviour seen in other studies, including the damped oscillation of the bubble radius with time and the existence of an elastic-limit solution. The model is extended in order to investigate multi-bubble dynamics near a rigid wall and a free surface. It is found that viscoelastic effects can prevent jet formation, produce cusped bubble shapes, and generally prevent the catastrophic collapse that is seen in the inviscid cases.\ud \ud The model is then used to investigate the role of viscoelasticity in the dynamics of rising gas bubbles. The dynamics of bubbles rising in a viscoelastic liquid are characterised by three phenomena: the trailing edge cusp, negative wake, and the rise velocity jump discontinuity. The model predicts the cusp at the trailing end of a rising bubble to a high resolution. However, the irrotational assumption precludes the prediction of the negative wake. The corresponding absence of the jump discontinuity supports the hypothesis that the negative wake is primarily responsible for the jump discontinuity, as mooted in previous studies. \ud \ud A second model is developed with the intention of gaining further insight into the role of viscoelasticity and corroborating the finndings of the first model. This second\ud model employs the full compressible governing equations in a two dimensional domain. The equations are solved using the spectral element method, while the two phases are\ud represented by "marker particles". The results are in qualitative agreement with the first model and confirm that the findings presented are a faithful account of bubble\ud dynamics in viscoelastic fluids.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 8.1 The First Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
    • 8.1.1 Spherical Bubble Dynamics . . . . . . . . . . . . . . . . . . . . 259
    • 8.1.2 Bubble Dynamics Near a Rigid Wall . . . . . . . . . . . . . . . 260
    • 8.1.3 Two Bubble Dynamics Near a Rigid Wall . . . . . . . . . . . . 261
    • 8.1.4 Bubble Dynamics Near a Free Surface . . . . . . . . . . . . . . 261
    • 8.1.5 Rising Gas Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . 262
    • 8.2 The Second Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
    • 8.3 Model Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
    • A Cubic Spline Construction 267
    • A.1 Natural Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
    • A.2 Clamped Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
    • 2(s~1 + s~2) s~2 [1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,
    • 1965. [2] J.S. Allen and R.A. Roy. Dynamics of gas bubbles in viscoelastic °uids. Linear
    • viscoelasticity. J. Acoust. Soc. of Am., 107(6):3167{3178, 2000. [3] M. T. Arigo and G. H. McKinley. An experimental investigation of negative
    • 37:307{327, 1998. [4] V. Ashworth and R. P. M. Procter. Cavitation in dilute polymer solutions.
    • Nature, 258, 1975. [5] G. Astarita. Spherical gas bubble motion through Maxwell liquids. Ind. Eng.
    • Chem. Fundamen., 5(4):548{553, 1966. [6] G. Astarita and G. Apuzzo. Motion of gas bubbles in non-Newtonian liquids.
    • A.I.Ch.E Journal, 11(5):815{820, 1965. [7] G. K. Batchelor. An introduction to Fluid Dynamics. Cambridge University
    • Press, 1967. [8] D. W. Beard and K. Walters. Elastico-viscous boundary-layer °ows. I. Two-
    • dimensional °ow near a stagnation point. Proc. Camb. Phil. Soc., 60:667, 1964. [9] T. B. Benjamin and A. T. Ellis. The collapse of cavitation bubbles and the
    • A, 260:221, 1966. [10] J.P. Best. The formation of toroidal bubbles upon the collapse of transient
    • cavities. J. Fluid Mech., 251:79{107, 1993. [11] J.P. Best and A. Kucera. A numerical investigation of non-spherical rebounding
    • bubbles. J. Fluid Mech., 245:137{154, 1992. [12] F. Bierbrauer. Mathematical modelling of water-droplet impact on hot galvanised
    • steel surfaces. PhD thesis, University of Wollongong, Australia, 2004. [13] F. Bierbrauer and T. N. Phillips. The numerical prediction of droplet deformation
    • Meth. Fluids, 58(8):1155{1160, 2007. [14] F. Bierbrauer and S. Zhu. A numerical model for multiphase °ow based on the
    • GMPPS formulation. Part I: Kinematics. Comput. Fluids, 36:1199{1212, 2007. [15] R.B. Bird, R.C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids.
    • John Wiley & Sons, 1987. [16] J. R. Blake, P. B. Robinson, A. Shima, and Y. Tomita. Interaction of two
    • cavitation bubbles with a rigid boundary. J. Fluid Mech., 255:707{721, 1993. [17] J.R. Blake and D.C Gibson. Growth and collapse of a vapour cavity near a free
    • surface. J. Fluid Mech., 111:123{140, 1981. [18] J.R. Blake and D.C. Gibson. Cavitation bubbles near boundaries. Ann. Rev.
    • Fluid Mech., 19:99{123, 1989. [19] J.R. Blake, B.B. Taib, and G. Doherty. Transient cavities near boundaries. Part
    • 1. Rigid boundary. J. Fluid Mech., 170:479{497, 1986. [20] J.R. Blake, B.B. Taib, and G. Doherty. Transient cavities near boundaries. Part
    • 2. Free surface. J. Fluid Mech., 181:197{212, 1987. [21] J.R. Blake, Y. Tomita, and R.P. Tong. The art, craft and science of modelling
    • jet impact in a collapsing cavitation bubble. App. Sci. Res., 58:77{90, 1998. [22] P. C. Bollada and T. N. Phillips. On the e®ects of a compressible viscous lubricant
    • 55:1091{1120, 2007. [23] P. C. Bollada and T. N. Phillips. An anisothermal, compressible, piezoviscous
    • model for journal bearing lubrication. Int. J. Num. Meth. Fluids, 58:27{55, 2008. [25] J. M. Boulton-Stone. The e®ect of surfactants on bursting gas bubbles. J. Fluid
    • Mech., 302:231{257, 1995. [26] J. M. Boulton-Stone and J. R. Blake. Gas bubbles bursting at a free surface. J.
    • Fluid Mech., 254:437{466, 1993. [27] J. M. Boulton-Stone, P. B. Robinson, and J. R. Blake. A note on the axisym-
    • Flow, 21(6):1237{1241, 1995. [28] D. C. Brabston. Part I. Numerical solutions of steady viscous °ow past spheres
    • and gas bubbles. PhD thesis, California Institute of Technology, 1974. [29] C.E. Brennen. Cavitation and Bubble Dynamics. Oxford University Press, 1995. [30] E. A. Brujan. A ¯rst order model for bubble dynamics in a compressible vis-
    • coelastic liquid. J. Non-Newtonian Fluid Mech., 84:83{103, 1999. [31] E. A. Brujan. The equation of bubble dynamics in a compressible linear vis-
    • coelastic liquid. Fluid Dynamics Research, 29:287{294, 2001. [32] E. A. Brujan. Cavitation bubble dynamics in non-Newtonian °uids. Polymer
    • Engineering and Science, 49:419{431, 2009. [33] E. A. Brujan, A. F. H. Al-Hussany, R. L. Williams, and P. R. Williams. Cavita-
    • tion erosion in polymer aqueous solutions. Wear, 264:1035{1042, 2008. [34] E. A. Brujan, T. Ikeda, and Y. Matsumoto. Dynamics of ultrasound-induced
    • Fluids, 16:2402, 2004. [35] E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel. Dynamics of laser-induced
    • cavitation bubbles near an elastic boundary. J. Fluid Mech., 433:251{281, 2001. [36] E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel. Dynamics of laser-induced
    • Fluid Mech., 433:283{314, 2001. [37] E. A. Brujan, C. D. Ohl, W. Lauterborn, and A. Philipp. Dynamics of laser-
    • induced cavitation bubbles in polymer solutions. Acustica, 82:423{430, 1996. [38] E. A. Brujan, A. Pearson, and J. R. Blake. Pulsating, buoyant bubbles close to
    • Flow, 31:302{317, 2005. [39] B. Bunner and G. Tryggvason. Dynamics of homogeneous bubbly °ows Part 1.
    • Rise velocity and microstructure of the bubbles. J. Fluid Mech., 466:17{52, 2002. [40] E. Canot and L. Davoust. Numerical simulation of the buoyancy-driven bouncing
    • of a 2D bubble at a horizontal wall. Theor. Comput. Fluid Dyn., 17:51{72, 2003. [41] G. L. Chahine and D. Fruman. Dilute polymer solution e®ects on bubble growth
    • and collapse. Phys. Fluids, 22:1406{1407, 1979. [42] A. J. Coleman, J. E. Saunders, L. A. Crum, and M. Dyson. Acoustic cavitation
    • and biology, 13(2):69{76, 1987. [43] N. Curle and H. J. Davies. Modern Fluid Dynamics, volume 1. D. Van Nostrand,
    • 1968. [44] D. Dawson and C. M. Taylor. Cavitation in bearings. Ann. Rev. Fluid Mech.,
    • 11:35{66, 1979. [45] M. M. Denn. Boundary layer °ows for a class of elastic °uids. Chem. Eng. Sci.,
    • 22(3):395{405, 1967. [46] D. G. Dommermuth and D. K. P. Yue. Numerical simulation of nonlinear ax-
    • isymmetric °ows with a free surface. J. Fluid Mech., 178:195{219, 1987. [47] M. Dular, B. Bachert, B. Sto®el, and B. Sirok. Relationship between cavitation
    • structures and cavitation damage. Wear, 257(11):1176{1184, 2004. [48] B. J. Edwards and A. N. Beris. Remarks concerning compressible viscoelastic
    • °uid models. J. Non-Newtonian Fluid Mech., 36:411{417, 1990. [49] M. Gad el Hak. Questions in °uid mechanics: Stoke's hypothesis for a Newtonian,
    • isotropic °uid. J. Fluids Eng., 117:3{5, 1995. [51] A. Evan, L. Willis, J. McAteer, M. Bailey, B. Connors, Y. Shao, J. Lingeman,
    • wave lithotripsy. J. Urology, 4(1):1556{1562, 2002. [52] N. Fi¶etier and M. O. Deville. Time-dependent algorithms for the simulation of
    • Phys., 186:93{121, 2003. [53] H. S. Fogler and J. D. Goddard. Oscillations of a gas bubble in viscoelastic
    • 42(1):259{263, 1971. [54] H.S. Fogler and J.D. Goddard. Collapse of spherical cavities in viscoelastic °uids.
    • Phys. Fluids, 13(5):1135{1141, 1970. [55] X. Frank and H. Z. Li. Complex °ow around a bubble rising in a non-Newtonian
    • °uid. Phys. Rev. E, 71:036309, 2005. [56] T. Funada and D. D. Joseph. Viscous potential °ow analysis of capillary insta-
    • bility. Int. J. Multiphase Flow, 28(9), 2002. [57] T. Funada and D. D. Joseph. Viscoelastic potential °ow analysis of capillary
    • instability. J. Non-Newtonian Fluid Mech., 111:87{105, 2003. [58] D. Funfschilling and H. Z. Li. Flow of non-Newtonian °uids around bubbles: PIV
    • 56:1137{1141, 2001. [59] X. Gao. A promising boundary element formulation for three dimensional viscous
    • °ow. Int. J. Numer. Meth. Fluids, 47:19{43, 2005. [60] S.-C. Georgescu, J.-L. Achard, and E. Canot. Jet drops ejection in bursting gas
    • bubble processes. Euro. J. Mech. B/Fluids, 21:265{280, 2002. [61] D. Guey±er, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski. Volume of °uid
    • °ows. J. Comput. Phys., 152:423{456, 1999. [62] J. Hadamard. Movement permanent lent d'une sphere liquide et visqueuse dans
    • un liquide visqueux. Comptes Rendus, 152:1735, 1911. [63] O. G. Harlen. The negative wake behind a sphere sedimenting through a vis-
    • coelastic °uid. J. Non-Newtonian Fluid Mech., 108:411{430, 2002. [64] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous
    • incompressible °ow of °uid with a free surface. Phys. Fluids., 8:2182{2189, 1965. [65] O. Hassager. Negative wake behind bubbles in non-Newtonian liquids. Nature,
    • 279:402, 1979. [66] J. R. Herrera-Velarde, R. Zenit, D. Chehata, and B. Mena. The °ow of non-
    • J. Non-Newtonian Fluid Mech., 111:199{209, 2003. [67] C. W. Hirt and B. D. Nichols. Volume of °uid (VOF) methods for the dynamics
    • of free boundaries. J. Comput. Phys., 39:201{225, 1981. [68] D. D. Joseph. Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, 1990. [69] D. D. Joseph. Rise velocity of a spherical cap bubble. J. Fluid Mech., 488:213{
    • 223, 2003. [70] D. D. Joseph. Potential °ow of viscous °uids: Historical notes. Int. J. Multiphase
    • Flow, 32:285{310, 2006. [71] D. D. Joseph, G. S. Beavers, and T. Funada. Rayleigh-Taylor instability of
    • viscoelastic drops at high Weber numbers. J. Fluid Mech., 453:109{132, 2002. [72] D.D. Joseph and T.Y. Liao. Potential °ows of viscous and viscoelastic °uids. J.
    • Fluid Mech., 265:1{23, 1994. [73] M. Kemiha, X. Frank, S. Poncin, and H.Z. Li. Origin of the negative wake
    • 61:4041{4047, 2006. [74] I. J. Keshtiban, F. Belblidia, and M. F. Webster. Numerical simulation of com-
    • pressible viscoelastic liquids. J. Non-Newtonian Fluid Mech., 122:131{146, 2004. [75] R. E. Khayat. A boundary element analysis of multiply connected three dimen-
    • 31:1173{1194, 1999. [76] R. E. Khayat. Three-dimensional boundary element analysis of drop deformation
    • Fluids, 34:241{275, 2000. [77] R. E. Khayat and K. Marek. An adaptive boundary element approach to 3D
    • Elements, 23:111{122, 1999. [78] C. Kim. Collapse of spherical cavities in Maxwell °uids. J. Non-Newtonian Fluid
    • Mech., 55:37{58, 1994. [79] S. J. Kim, K. H. Lim, and C. Kim. Deformation characteristics of spherical bubble
    • ALE formulation. Korea-Australia Rheol. J., 18(2):109{118, 2006. [80] E. Klaseboer, K. C. Hung, C. Wang, C. W. Wang, B. C. Khoo, P. Boyce,
    • Fluid Mech., 537:387{413, 2005. [97] M. S. Longuet-Higgins and E. D. Cokelet. The deformation of steep surface
    • 350:1{26, 1976. [98] J. Lo¶pez, J. Herna¶ndez, P. Go¶mez, and F. Faura. A volume of °uid method based
    • Phys., 195:718{742, 2004. [99] J. Lu, A. Fernndez, and G. Tryggvason. The e®ect of bubbles on the wall drag
    • in a turbulent channel °ow. Phys. Fluids., 17, 2005. [100] T. S. Lundgren and N. N. Mansour. Vortex ring bubbles. J. Fluid Mech., 224:177{
    • 196, 1991. [101] C. W. Macosko. Rheology - Principles, measurements, and applications. Wiley-
    • Vch, 1994. [102] C. M¶alaga and J. M. Rallison. A rising bubble in a polymer solution. J. Non-
    • Newtonian Fluid Mech., 141:59{78, 2007. [103] F. Mashayek and N. Ashgriz. A hybrid ¯nite-element-volume-of-°uid method for
    • simulating free surface °ows and interfaces. Int. J. Num. Meth. Fluid., 20:1363{
    • 1380, 1995. [104] S. Matu·sºa-Ne·casova¶, A. Sequeira, and J. H. Videman. Existence of classical
    • Math. Meth. Appl. Sci., 22:449{460, 1999. [105] M. J. Miksis, J.-M. Vanden-Broeck, and J. B. Keller. Rising bubbles. J. Fluid
    • Mech., 123:31{41, 1982. [106] D. W. Moore. The rise of gas bubble in a viscous liquid. J. Fluid Mech., 6:113{
    • 130, 1959. [107] D. W. Moore. The boundary layer on a spherical gas bubble. J. Fluid Mech.,
    • 16:161{176, 1963. [108] W. F. Noh and P. Woodward. Lecture notes in Physics, volume 59, chapter SLIC
    • (simple line interface calculation), pages 330{340. Springer, 1976. [109] J. G. Oldroyd. On the formulation of rheological equations of state. Proc. R.
    • Soc. Lond. A, 200(1063):523{541, 1950. [110] J. G. Oldroyd. Note on the hydrodynamic and thermodynamic pressures. Proc.
    • R. Soc. Lond. A, 226:57{58, 1954. [111] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed:
    • Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12{
    • 49, 1988. [123] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
    • Recipes. Cambridge University Press, 1988. [136] W. Rybzynski. UÄber die fortschreitende bewegung einer °uÄssigen kugel in einem
    • zÄahen medium. Bull. Acad. Sci. Cracovie, A:40, 1911. [148] I. Tanasawa and W. J. Yang. Dynamic behaviour of a gas bubble in viscoelastic
    • liquids. J. Appl. Phys., 41(11):4526{4531, 1970. [160] Q. X. Wang, K. S. Yeo, B. C. Khoo, and K. Y. Lam. Nonlinear interaction
    • between gas bubble and free surface. Computers and °uids, 25(7), 1996. [161] Q. X. Wang, K. S. Yeo, B. C. Khoo, and K. Y. Lam. Strong interaction between
    • a buoyancy bubble and a free surface. Theor. Comput. Fluid Dyn., 8:73{88, 1996. [162] N. D. Waters and M. J. King. Unsteady °ow of an elastico-viscous liquid. Rheol.
    • Acta, 9:345{355, 1970. [163] P. P. Wegener and J-Y. Parlange. Spherical cap bubbles. Annu. rev. Fluid Mech.,
    • 5:79{100, 1973. [164] P. R. Williams, P. M. Williams, and S. W. J. Brown. A technique for studying
    • J. Non-Newtonian Fluid Mech., 72:101{110, 1997.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok