Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hodge, Rebecca A.; Hoey, Trevor B. (2016)
Publisher: Wiley-Blackwell Publishing Ltd.
Languages: English
Types: Article
The controls on hydraulics in bedrock-alluvial rivers are relatively poorly understood, despite the importance of the flow in determining rates and patterns of sediment transport and consequent erosion. To measure hydraulics within a bedrock-alluvial channel, we developed a 1:10 Froude-scaled laboratory model of an 18 x 9 m bedrock-alluvial river reach using terrestrial laser scanning and 3D printing. In the reported experiments, water depth and velocity were recorded at 18 locations within the channel at each of 5 different discharges. Additional data from runs with sediment cover in the flume were used to evaluate the hydraulic impact of sediment cover; the deposition and erosion of sediment patches in these runs is analysed in the companion paper. In our data: 1) spatial variation in both flow velocity and Froude number increases with discharge; 2) bulk flow resistance and Froude number become independent of discharge at higher discharges; 3) local flow velocity and Reynolds stress are correlated to the range of local bed topography at some, but not most, discharges; 4) at lower discharges, local topography induces vertical flow structures and slower velocities, but these effects decrease at higher discharges and, 5) there is a relationship between the linear combination of bed and sediment roughness and local flow velocity. These results demonstrate the control that bedrock topography exerts over both local and reach-scale flow conditions, but spatially distributed hydraulic data from bedrock-alluvial channels with different topographies are needed to generalise these findings.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Babaeyan-Koopaei, K., D. Ervine, P. Carling, and Z. Cao (2002), Velocity and Turbulence Measurements for Two Overbank Flow Events in River Severn, J. Hydraul. Eng., 128(10), 891-900, doi:10.1061/(ASCE)0733-9429(2002)128:10(891).
    • Baynes, E. R. C., M. Attal, S. Niedermann, L. A. Kirstein, A. J. Dugmore, and M. Naylor (2015), Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland, PNAS, 201415443, doi:10.1073/pnas.1415443112.
    • Brayshaw, A. C., L. E. Frostick, and I. Reid (1983), The hydrodynamics of particle clusters and sediment entrapment in coarse alluvial channels, Sedimentology, 30(1), 137-143, doi:10.1111/j.1365-3091.1983.tb00656.x.
    • Buffin-BĂ©langer, T., S. Rice, I. Reid, and J. Lancaster (2006), Spatial heterogeneity of nearbed hydraulics above a patch of river gravel, Water Resour. Res., 42(4), W04413, doi:10.1029/2005WR004070.
    • Coleman, S. E., V. I. Nikora, and J. Aberle (2011), Interpretation of alluvial beds through bed-elevation distribution moments, Water Resour. Res., 47, W11505, doi:10.1029/2011WR010672.
    • Colombini, M. (1993), Turbulence-driven secondary flows and formation of sand ridges, J.
    • Fluid Mech., 254, 701-719, doi:10.1017/S0022112093002319.
    • Cook, K. L., J. M. Turowski, and N. Hovius (2013), A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint propagation, Earth Surf. Process.
    • Landforms, 38(7), 683-695, doi:10.1002/esp.3313.
    • Doroudian, B., F. Bagherimiyab, and U. Lemmin (2010), Improving the accuracy of fourreceiver acoustic Doppler velocimeter (ADV) measurements in turbulent boundary layer flows, Limnol. Oceanogr. Meth., 8, 575-591, doi:10.4319/lom.2010.8.575.
    • Elder K, Kattelmann R, and R. Ferguson (1990). Refinements in dilution gauging for mountain streams. Int. Assoc. Hydrol. Sci. Publ. 193, 247-254.
    • Ferguson, R. I. (2012), River channel slope, flow resistance, and gravel entrainment thresholds, Water Resour. Res., 48(5), W05517, doi:10.1029/2011WR010850.
    • Finnegan, N. J., L. S. Sklar, and T. K. Fuller (2007), Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel, J. Geophys. Res., 112(F3), doi:10.1029/2006JF000569.
    • Grant, G. E. (1997), Critical flow constrains flow hydraulics in mobile-bed streams: A new hypothesis, Water Resour. Res., 33(2), 349-358, doi:10.1029/96WR03134.
    • Gupta, A., and H. Fox (1974), Effects of high-magnitude floods on channel form: A case study in Maryland Piedmont, Water Resour. Res., 10(3), 499-509, doi:10.1029/WR010i003p00499.
    • Hardy, R.J., Best, J.L., Lane, S.N., and P.E. Carbonneau (2010), Coherent flow structures in a depth-limited flow over a gravel surface: The influence of surface roughness, J. Geophys.
    • Res. 115, F03006. doi:10.1029/2009JF001416 Heritage, G. L., B. P. Moon, L. J. Broadhurst, and C. S. James (2004), The frictional resistance characteristics of a bedrock-influenced river channel, Earth Surf. Process.
    • Landforms, 29(5), 611-627, doi:10.1002/esp.1057.
    • Huang, H. Q., H. H. Chang, and G. C. Nanson (2004), Minimum energy as the general form of critical flow and maximum flow efficiency and for explaining variations in river channel pattern, Water Resour. Res., 40, W04502, doi:10.1029/2003WR002539.
    • Wells, S. G., and A. M. Harvey (1987), Sedimentologic and geomorphic variations in stormgenerated alluvial fans, Howgill Fells, northwest England, Geol. Soc. Am. Bull., 98(2), 182- 198, doi:10.1130/0016-7606(1987)98<182:SAGVIS>2.0.CO;2.
    • Whipple, K. (2004), Bedrock rivers and the geomorphology of active orogens, Annu. Rev.
    • Earth Planet. Sci., 32, 151-185, doi:10.1146/annurev.earth.32.101802.120356.
    • Whitbread, K., J. Jansen, P. Bishop, and M. Attal (2015), Substrate, sediment, and slope controls on bedrock channel geometry in postglacial streams. J. Geophys. Res. Earth Surf., 120, 779-798. doi: 10.1002/2014JF003295.
    • Wohl, E., and G. C. L. David (2008), Consistency of scaling relations among bedrock and alluvial channels, J. Geophys. Res., 113(F4), F04013, doi:10.1029/2008JF000989.
    • Wohl, E. E., D. M. Thompson, and A. J. Miller (1999), Canyons with undulating walls, Geol.
    • Soc. Am. Bull., 111(7), 949-959, doi:10.1130/0016- 7606(1999)111<0949:CWUW>2.3.CO;2.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article