LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hodge, Rebecca A.; Hoey, Trevor B. (2016)
Publisher: Wiley-Blackwell Publishing Ltd.
Languages: English
Types: Article
Subjects:
The controls on hydraulics in bedrock-alluvial rivers are relatively poorly understood, despite the importance of the flow in determining rates and patterns of sediment transport and consequent erosion. To measure hydraulics within a bedrock-alluvial channel, we developed a 1:10 Froude-scaled laboratory model of an 18 x 9 m bedrock-alluvial river reach using terrestrial laser scanning and 3D printing. In the reported experiments, water depth and velocity were recorded at 18 locations within the channel at each of 5 different discharges. Additional data from runs with sediment cover in the flume were used to evaluate the hydraulic impact of sediment cover; the deposition and erosion of sediment patches in these runs is analysed in the companion paper. In our data: 1) spatial variation in both flow velocity and Froude number increases with discharge; 2) bulk flow resistance and Froude number become independent of discharge at higher discharges; 3) local flow velocity and Reynolds stress are correlated to the range of local bed topography at some, but not most, discharges; 4) at lower discharges, local topography induces vertical flow structures and slower velocities, but these effects decrease at higher discharges and, 5) there is a relationship between the linear combination of bed and sediment roughness and local flow velocity. These results demonstrate the control that bedrock topography exerts over both local and reach-scale flow conditions, but spatially distributed hydraulic data from bedrock-alluvial channels with different topographies are needed to generalise these findings.

Share - Bookmark

Cite this article