Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chan, Chu Yan
Languages: English
Types: Doctoral thesis
Diabetic patients are prone to develop cataract, compared to non-diabetic patients (Kyselova et al., 2004). The global prevalence of diabetes is around 150 millions in 2004 (5% of the world population), with 1.8 million people in the United Kingdom affected (Diabetes UK, 2004). In western countries, diabetes accounts for around 12% of the total cataract population (Harding, 1999). It has been proposed that hyperglycemia is the major risk factor in diabetic cataract, and could be the starting point for all of the consequent pathological changes including, glucoxidation, glycation and activation of the polyol pathway, which finally result in diabetic complications (Sensi et al., 1995 Hotta, 1997 Brownlee, 2001). The present study aimed to characterise the mechanism of glucose transport into the aqueous humour. Using the Ussing-type chamber technique, glucose transport kinetics were characterised for the bovine CBE. The glucose fluxes were sensitive to a number of glucose transporter inhibitors including cytochalasin B ( 80% inhibition), phloretin ( 59% inhibition) and phlorizin ( 21% inhibition), and it also varied with stromal glucose concentration. In an investigation of mRNA expression using RT-PCR, GLUT1, GLUT3, GLUT4, GLUT5 and SGLT2 were found to be expressed in the bovine CBE. Due to difficulties encountered in the protein expression study, it was not possible to confirm that all of these mRNAs are translated. Nevertheless, the major glucose transport mechanism across the bovine CBE was determined to be a facilitative and carrier-mediated mode, since the glucose transport was effectively inhibited by the addition of cytochalasin B and phloretin. The transport system is likely to saturate when the plasma glucose concentration reaches 10.6 mM. These results, together with the gene expression data, may provide a new insight into devising a therapeutic strategy in the control of aqueous glucose levels which may eventually prevent the diabetic cataract formation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Koepsell, H., Fritzsch, G., Kom, K. and Madrala, A. (1990). Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis o f phlorizin binding and D-glucose transport measurements. JM embr Biol; 114(2): 113-32.
    • Kdhler, G. and Milstein, C. (1975). Continuous cultures o f fused cells secreting antibody of predefined specificity. Nature; 256(5517): 495-7.
    • Kowluru, R.A. (2003a). Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes; 52(3): 818-23.
    • Kowluru, R.A. and Koppolu, P. (2002). Diabetes-induced activation o f caspase-3 in retina: effect of antioxidant therapy. Free Radic Res; 36(9): 993-9.
    • Kowluru, R.A., Koppolu, P., Chakrabarti, S. and Chen, S. (2003b). Diabetes-induced activation o f nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res; 37(11): 1169-80.
    • Koya, D., Haneda, M., Nakagawa, H., Isshiki, K., Sato, H. et al. (2000). Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. Faseb J; 14(3): 439-47.
    • Koya, D., Jirousek, M.R., Lin, Y.W., Ishii, H., Kuboki, K. et al. (1997). Characterization o f protein kinase C beta isoform activation on the gene expression o f transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli o f diabetic rats. J Clin Invest; 100(1): 115-26.
    • Koya, D. and King, G.L. (1998). Protein kinase C activation and the development of diabetic complications. Diabetes; 47(6): 859-66.
    • Kozart, D.M. (1968). Light and electron microscopic study o f regional morphologic differences in the processes of the ciliary body in the rabbit. Invest Ophthalmol; 7(1): 15-33.
    • Krebs, H.A. (1972). The Pasteur effect and the relations between respiration and fermentation. Essays Biochem; 8: 1-34.
    • Krishan, A. (1972). Cytochalasin-B: time-lapse cinematographic studies on its effects on cytokinesis. J Cell Biol; 54(3): 657-64.
    • Krupin, T. and Civan, M.M. (1995). Physiologic basis of aqueous humor formation. In: The Glaucomas (Eds, Ritch, R., Shields, M.B. and Krupin, T.). St. Louis: CV Mosby, pp. 251-280.
    • Krupin, T. and Civan, M.M. (1996). Physiologic basis o f aqueous humor formation. In: The Glaucomas (Eds, Ritch, R., Shields, M.B. and Krupin, T.). St. Louis: CV Mosby.
    • Krupin, T., Reinach, P.S., Candia, O.A. and Podos, S.M. (1984). Transepithelial electrical measurements on the isolated rabbit iris-ciliary body. Exp Eye Res; 38(2): 115-23.
    • Krupka, R.M. (1985). Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. J Membr Biol; 83(1-2): 71-80.
    • Kuang, H., Zou, W., Liu, D., Shi, R., Cheng, L. et al. (2003). The potential role o f IGF-I receptor mRNA in rats with diabetic retinopathy. Chin Med J (Engl); 116(3): 478-80.
    • Kuboki, K., Jiang, Z.Y., Takahara, N., Ha, S.W., Igarashi, M. et al. (2000). Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action o f insulin. Circulation; 101(6): 676-81.
    • Kurien, B.T. and Scofield, R.H. (2003). Protein blotting: a review. J Immunol Methods', 274(1-2): 1-15.
    • Kuriyama, H., Sasaki, K. and Fukuda, M. (1983). Studies on diabetic cataract in rats induced by streptozotocin. II. Biochemical examinations of rat lenses in relation to cataract stages. Ophthalmic Res; 15(4): 191-7.
    • Kwon, H.M., Yamauchi, A., Uchida, S., Preston, A.S., Garcia-Perez, A. et al. (1992). Cloning o f the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J B io l Chem; 267(9): 6297-301.
    • Kyselova, Z., Stefek, M. and Bauer, V. (2004). Pharmacological prevention o f diabetic cataract. J Diabetes Complications; 18(2): 129-40.
    • Laemmli, U.K. (1970). Cleavage o f structural proteins during the assembly of the head o f bacteriophage T4. Nature; 227(259): 680-5.
    • Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S. et al. (1998). Functional significance of cell volume regulatory mechanisms. Physiol Rev; 78(1): 247-306.
    • Laris, P.C. and Henius, G.V. (1982). Influence of glucose on Ehrlich cell volume, ion transport, and membrane potential. Am J Physiol; 242(5): C326-32.
    • Larkin, P.D. and Park, W.D. (1999). Transcript accumulation and utilization o f alternate and non-consensus splice sites in rice granule-bound starch synthase are temperaturesensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol; 40(4): 719-27.
    • Leach, L. and Firth, J.A. (1992). Fine structure o f the paracellular junctions of terminal villous capillaries in the perfused human placenta. Cell Tissue Res; 268(3): 447-52.
    • Lebovitz, H.E. (2001). Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes; 109(Suppl 2): S135-48.
    • Lee, A.Y. and Chung, S.S. (1999). Contributions o f polyol pathway to oxidative stress in diabetic cataract. FasebJ; 13(1): 23-30.
    • Lee, W.H. and Bondy, C.A. (1993). Ischemic injury induces brain glucose transporter gene expression. Endocrinology; 133(6): 2540-4.
    • Lee, W.J., Peterson, D.R., Sukowski, E.J. and Hawkins, R.A. (1997). Glucose transport by isolated plasma membranes o f the bovine blood-brain barrier. Am J Physiol; 272(5 Pt 1): C l552-7.
    • Lee, W.S., Kanai, Y., Wells, R.G. and Hediger, M.A. (1994). The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution o f expression. J Biol Chem; 269(16): 12032-9.
    • Leong, M.M., Milstein, C. and Pannell, R. (1986). Luminescent detection method for immunodot, Western, and Southern blots. JHistochem Cytochem; 34(12): 1645-50.
    • Leske, M.C., Chylack, L.T., Jr. and Wu, S.Y. (1991). The Lens Opacities Case-Control Study. Risk factors for cataract. Arch Ophthalmol; 109(2): 244-51.
    • Leung, D.W., Loo, D.D., Hirayama, B.A., Zeuthen, T. and Wright, E.M. (2000b). Urea transport by cotransporters. J Physiol; 528(Pt 2): 251-7.
    • Leung, G.M. and Lam, K.S. (2000a). Diabetic complications and their implications on health care in Asia. Hong Kong Med J ; 6(1): 61-8.
    • Lewis, B.S. and Harding, J.J. (1990). The effects of aminoguanidine on the glycation (non-enzymic glycosylation) of lens proteins. Exp Eye Res; 50(5): 463-7.
    • Lewis, S.A. (1996). Epithelial electrophysiology. In: Epithelial Transport: A Guid to Methods and Experimental Analysis (Eds, Wills, N.K., Reuss, L. and Lewis, S.A.). London: Chapman & Hall, pp. 93-117.
    • Li, H., Myeroff, L., Smiraglia, D., Romero, M.F., Pretlow, T.P. et a l (2003). SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci US A; 100(14): 8412-7.
    • Li, Q., Manolescu, A., Ritzel, M., Yao, S., Slugoski, M. et a l (2004). Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am J Physiol Gastrointest Liver Physiol; 287(1): G236-42.
    • Li, W., Chan, L.S., Khatami, M. and Rockey, J.H. (1985). Characterization of glucose transport by bovine retinal capillary pericytes in culture. Exp Eye Res; 41(2): 191-9.
    • Lin, J. (1997). Pathophysiology of cataracts: copper ion and peroxidation in diabetics. Jpn J Ophthalmol; 41(3): 130-7.
    • Lin, S., Santi, D.V. and Spudich, J.A. (1974b). Biochemical studies on the mode of action of cytochalasin B. Preparation o f (3H)cytochalasin B and studies on its binding of cells. JB iol Chem; 249(7): 2268-74.
    • Lin, S. and Spudich, J.A. (1974a). Biochemical studies on the mode of action of cytochalasin B. Cytochalasin B binding to red cell membrane in relation to glucose transport. JB iol Chem; 249(18): 5778-83.
    • Lingrel, J.B. and Kuntzweiler, T. (1994). Na+,K(+)-ATPase. JB io l Chem; 269(31): 19659-62.
    • Lisinski, I., Schurmann, A., Joost, H.G., Cushman, S.W. and Al-Hasani, H. (2001). Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells. Biochem J; 358(Pt 2): 517-22.
    • Liu, P., Leffler, B.J., Weeks, L.K., Chen, G., Bouchard, C.M. et a l (2004). Sphingomyelinase activates GLUT4 translocation via a cholesterol-dependent mechanism. Am J Physiol Cell Physiol; 286(2): C317-29.
    • Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M. et a l (2003). Chemical foundations. In: Molecular Cell Biology (Eds, Lodish, H., Berk, A., Matsudaira, P. et al). New York: W.H.Freeman and Company, pp. 29-54.
    • Loike, J.D., Cao, L., Kuang, K., Vera, J.C., Silverstein, S.C. et a l (1993). Role of facilitative glucose transporters in diffiisional water permeability through J774 cells. J Gen Physiol; 102(5): 897-906.
    • Loo, D.D., Zeuthen, T., Chandy, G. and Wright, E.M. (1996). Cotransport o f water by the Na+/glucose cotransporter. Proc Natl Acad Sci US A; 93(23): 13367-70.
    • Lostao, M.P., Hirayama, B.A., Panayotova-Heiermann, M., Sampogna, S.L., Bok, D. et al. (1995). Arginine-427 in the Na+/glucose cotransporter (SGLT1) is involved in trafficking to the plasma membrane. FEES Lett; 377(2): 181-4.
    • Lu, M., Perez, V.L., Ma, N., Miyamoto, K., Peng, H.B. et al. (1999). VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci; 40(8): 1808-12.
    • Lucas, V.A. and Duncan, G. (1983). Specificity of glucose transport inhibitors in the frog lens. Exp Eye Res; 37(2): 175-82.
    • Lutz, A J. and Pardridge, W.M. (1993). Insulin therapy normalizes GLUT1 glucose transporter mRNA but not immunoreactive transporter protein in streptozocin-diabetic rats. Metabolism; 42(8): 939-44.
    • Macheda, M.L., Williams, E.D., Best, J.D., Wlodek, M.E. and Rogers, S. (2003). Expression and localisation of GLUT1 and GLUT 12 glucose transporters in the pregnant and lactating rat mammary gland. Cell Tissue Res; 311(1): 91-7.
    • Mackenzie, B., Loo, D.D., Panayotova-Heiermann, M. and Wright, E.M. (1996). Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. JB iol Chem; 271(51): 32678-83.
    • Mackenzie, B., Loo, D.D. and Wright, E.M. (1998). Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol; 162(2) : 101-6.
    • Mackenzie, B., Panayotova-Heiermann, M., Loo, D.D., Lever, J.E. and Wright, E.M. (1994). SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation. JB iol Chem; 269(36): 22488-91.
    • Maher, F., Vannucci, S.J. and Simpson, I.A. (1994). Glucose transporter proteins in brain. FasebJ; 8(13): 1003-11.
    • Mahraoui, L., Rodolosse, A., Barbat, A., Dussaulx, E., Zweibaum, A. et al. (1994). Presence and differential expression o f SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J; 298(3 Pt 3): 629-33.
    • Malathi, P. and Crane, R.K. (1969). Phlorizin hydrolase: a beta-glucosidase of hamster intestinal brush border membrane. Biochim Biophys Acta; 173(2): 245-56.
    • Mamchaoui, K., Makhloufi, Y. and Saumon, G. (2002). Glucose transporter gene expression in freshly isolated and cultured rat pneumocytes. Acta Physiol Scand; 175(1): 19-24.
    • Mandarino, L.J., Finlayson, J. and Hassell, J.R. (1994). High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Invest Ophthalmol Vis Sci; 35(3): 964-72.
    • Marcus, R.G., England, R., Nguyen, K., Charron, M.J., Briggs, J.P. et al. (1994). Altered renal expression of the insulin-responsive glucose transporter GLUT4 in experimental diabetes mellitus. Am J Physiol; 267(5 Pt 2): F816-24.
    • Martin, M.G., Turk, E., Lostao, M.P., Kemer, C. and Wright, E.M. (1996). Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet; 12(2): 216-20.
    • Masters, B.A., Wemer, H., Roberts, C.T., Jr., LeRoith, D. and Raizada, M.K. (1991). Developmental regulation of insulin-like growth factor-I-stimulated glucose transporter in rat brain astrocytes. Endocrinology; 128(5): 2548-57.
    • Masterson, E. and Chader, G.J. (1981). Characterization of glucose transport by cultured chick pigmented epithelium. Exp Eye Res; 32(3): 279-89.
    • Matsui, H., Murakami, M., Wynns, G.C., Conroy, C.W., Mead, A. et al. (1996). Membrane carbonic anhydrase (IV) and ciliary epithelium. Carbonic anhydrase activity is present in the basolateral membranes of the non-pigmented ciliary epithelium of rabbit eyes. Exp Eye Res; 62(4): 409-17.
    • Matsuura, T., Tamura, T., Chinen, Y. and Ohta, T. (2002). A novel mutation (N32K) of GLUT2 gene in a Japanese patient with Fanconi-Bickel syndrome. Clin Genet; 62(3): 255-6.
    • McCartney, M.D. and Cantu-Crouch, D. (1992). Rabbit comeal epithelial wound repair: tight junction reformation. Curr Eye Res; 11(1): 15-24.
    • McVie-Wylie, A.J., Lamson, D.R. and Chen, Y.T. (2001). Molecular cloning of a novel member of the GLUT family of transporters, SLC2alO (GLUT 10), localized on chromosome 20ql3.1: a candidate gene forNIDDM susceptibility. Genomics; 72(1): 113-7.
    • Meinild, A., Klaerke, D.A., Loo, D.D., Wright, E.M. and Zeuthen, T. (1998). The human Na+-glucose cotransporter is a molecular water pump. J Physiol; 508(Pt 1): 15-21.
    • Meinild, A.K., Hirayama, B.A., Wright, E.M. and Loo, D.D. (2002). Fluorescence studies of ligand-induced conformational changes of the Na(+)/glucose cotransporter. Biochemistry; 41(4): 1250-8.
    • Melnik, E., Latorre, R., Hall, J.E. and Tosteson, D.C. (1977). Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol; 69(2): 243-57.
    • Merriman-Smith, B.R., Krushinsky, A., Kistler, J. and Donaldson, P.J. (2003). Expression patterns for glucose transporters GLUT1 and GLUT3 in the normal rat lens and in models of diabetic cataract. Invest Ophthalmol Vis Sci; 44(8): 3458-66.
    • Merriman-Smith, R., Donaldson, P. and Kistler, J. (1999). Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens. Invest Ophthalmol Vis Sci; 40(13): 3224-30.
    • Metz, J., Aoki, A. and Forssmann, W.G. (1978). Studies on the ultrastructure and permeability of the hemotrichorial placenta. I. Intercellular junctions o f layer I and tracer administration into the maternal compartment. Cell Tissue Res; 192(3): 391-407.
    • Miceli, M.V., Newsome, D.A. and Schriver, G.W. (1990). Glucose uptake, hexose monophosphate shunt activity, and oxygen consumption in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci; 31(2): 277-83.
    • Michelle Furtado, L., Poon, V. and Klip, A. (2003). GLUT4 activation: thoughts on possible mechanisms. Acta Physiol Scand; 178(4): 287-96.
    • Miller, J.H., Mullin, J.M., McAvoy, E. and Kleinzeller, A. (1992). Polarity o f transport o f 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1). Biochim Biophys Acta; 1110(2): 209-17.
    • Miller, S. and Steinberg, R.H. (1976). Transport of taurine, L-methionine and 3-omethyl-D-glucose across frog retinal pigment epithelium. Exp Eye Res; 23(2): 177-89.
    • Miller, W.R., Hulme, M.J., Bartlett, J.M., MacCallum, J. and Dixon, J.M. (1997). Changes in messenger RNA expression of protein kinase A regulatory subunit ialpha in breast cancer patients treated with tamoxifen. Clin Cancer Res; 3(12 Pt 1): 2399-404.
    • Misra, A., Vikram, N.K. and Kumar, A. (2004). Diabetic maculopathy and lipid-lowering therapy. Eye; 18(1): 107-8.
    • Miura, S., Tsunoda, N., Ikeda, S., Kai, Y., Ono, M. et al. (2003). Regulatory sequence elements of mouse GLUT4 gene expression in adipose tissues. Biochem Biophys Res Commun; 312(2): 277-84.
    • Miyamoto, K., Khosrof, S., Bursell, S.E., Rohan, R., Murata, T. et al. (1999). Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci US A ; 96(19): 10836- 41.
    • Miyamoto, K., Tatsumi, S., Morimoto, A., Minami, H., Yamamoto, H. et al. (1994). Characterization of the rabbit intestinal fructose transporter (GLUT5). Biochem J; 303(Pt 3): 877-83.
    • Mobasheri, A., Neama, G., Bell, S., Richardson, S. and Carter, S.D. (2002). Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9. Cell Biol Int; 26(3): 297-300.
    • Mooradian, A.D. and Morin, A.M. (1991). Brain uptake o f glucose in diabetes mellitus: the role of glucose transporters. Am J Med Sci; 301(3): 173-7.
    • Morgello, S., Uson, R.R., Schwartz, EJ . and Haber, R.S. (1995). The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia; 14(1): 43-54.
    • Morimura, H., Shimada, S., Otori, Y., Saishin, Y., Yamauchi, A. et al. (1997). The differential osmoregulation and localization of taurine transporter mRNA and Na+/myo-inositol cotransporter mRNA in rat eyes. Brain Res Mol Brain Res; 44(2): 245-52.
    • Morrison, J.C. and Freddo, T.F. (1996). Anatomy, microcirculation, and ultrastructure of the ciliary body. In: The Glaucomas (Eds, Ritch, R., Shields, M.B. and Krupin, T.). St. Louis: CV Mosby, pp. 125-138.
    • Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I. et a l (1985). Sequence and structure of a human glucose transporter. Science; 229(4717): 941-5.
    • Mueckler, M., Weng, W. and Kruse, M. (1994b). Glutamine 161 of Glutl glucose transporter is critical for transport activity and exofacial ligand binding. JBiol Chem; 269(32): 20533-8.
    • Mueller, R. and Young, I. (2001). DNA technology and applications. In: Emery's Elements o fMedical Genetics (Eds, Mueller, R. and Young, I.). Edinburgh: Elsevier Science Limited, pp. 55-79.
    • Mullarkey, C.J., Edelstein, D. and Brownlee, M. (1990). Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun; 173(3): 932-9.
    • Muller, L.M. and Kennedy, J.A. (1996). Quantification of rat pre-pro-thyrotropin releasing hormone (TRH) mRNA by reverse transcription-polymerase chain reaction using external and internal standardisation. JNeurosci Methods,' 68(2): 269-74.
    • Muther, T.F. and Friedland, B.R. (1980). Autoradiographic localization o f carbonic anhydrase in the rabbit ciliary body. JHistochem Cytochem; 28(10): 1119-24.
    • Nagamatsu, S., Komhauser, J.M., Burant, C.F., Seino, S., Mayo, K.E. et a l (1992). Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites o f expression by in situ hybridization. JB iol Chem; 267(1): 467-72.
    • Nagamatsu, S., Sawa, H., Kamada, K., Nakamichi, Y., Yoshimoto, K. et a l (1993). Neuron-specific glucose transporter (NSGT): CNS distribution o f GLUT3 rat glucose transporter (RGT3) in rat central neurons. FEBS Lett; 334(3): 289-95.
    • Nagaraj, R.H., Kern, T.S., Sell, D.R., Fogarty, J., Engerman, R.L. et a l (1996). Evidence of a glycemic threshold for the formation of pentosidine in diabetic dog lens but not in collagen. Diabetes; 45(5): 587-94.
    • Nagata, K., Hori, N., Sato, K., Ohta, K., Tanaka, H. et a l (1999). Cloning and functional expression of an SGLT-l-like protein from the Xenopus laevis intestine. Am J Physiol', 276(5 P tl ) : G1251-9.
    • Nakamura, S., Makita, Z., Ishikawa, S., Yasumura, K., Fujii, W. et a l (1997). Progression o f nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes,' 46(5): 895-9.
    • Nelson, J.A. and Falk, R.E. (1993). Phloridzin and phloretin inhibition of 2-deoxy-Dglucose uptake by tumor cells in vitro and in vivo. Anticancer Res,' 13(6A): 2293-9.
    • Nielsen, N.V. and Vinding, T. (1984). The prevalence of cataract in insulin-dependent and non-insulin-dependent-diabetes mellitus. Acta Ophthalmol (Copenh); 62(4): 595- 602.
    • Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T. et a l (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature; 404(6779): 787-90.
    • Nishio, Y., Kashiwagi, A., Taki, H., Shinozaki, K., Maeno, Y. et al. (1998). Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats. Diabetes; 47(8): 1318-25.
    • Nishizaki, T., Kammesheidt, A., Sumikawa, K., Asada, T. and Okada, Y. (1995). A sodium- and energy-dependent glucose transporter with similarities to SGLT1-2 is expressed in bovine cortical vessels. Neurosci Res; 22(1): 13-22.
    • Nishizaki, T. and Matsuoka, T. (1998). Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke; 29(4): 844-9.
    • Nixon, A.J., Brower-Toland, B.D. and Sandell, L.J. (1999). Primary nucleotide structure of predominant and alternate splice forms of equine insulin-like growth factor I and their gene expression patterns in tissues. Am J Vet Res; 60(10): 1234-41.
    • Nonaka, A., Kiryu, J., Tsujikawa, A., Yamashiro, K., Miyamoto, K. et al. (2000). PKCbeta inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci; 41(9): 2702-6.
    • Noske, W., Stamm, C.C. and Hirsch, M. (1994). Tight junctions o f the human ciliary epithelium: regional morphology and implications on transepithelial resistance. Exp Eye Res; 59(2): 141-9.
    • Novelli, M., De Tata, V., Bombara, M., Bergamini, E. and Masiello, P. (2000). Agedependent reduction in GLUT-2 levels is correlated with the impairment of the insulin secretory response in isolated islets of Sprague-Dawley rats. Exp Gerontol; 35(5): 641- 51.
    • Oates, P.J. (2002). Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol; 50: 325-92.
    • Obrosova, I., Cao, X., Greene, D.A. and Stevens, M.J. (1998). Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DLalpha-lipoic acid. Diabetologia; 41(12): 1442-50.
    • Oh, J., Krupin, T., Tang, L.Q., Sveen, J. and Lahlum, R.A. (1994). Dye coupling of rabbit ciliary epithelial cells in vitro. Invest Ophthalmol Vis Sci; 35(5): 2509-14.
    • Ohneda, M., Johnson, J.H., Inman, L.R., Chen, L., Suzuki, K. et al. (1993). GLUT2 expression and function in beta-cells of GK rats with NIDDM. Dissociation between reductions in glucose transport and glucose-stimulated insulin secretion. Diabetes; 42(7): 1065-72.
    • Ohtsubo, M., Noguchi, S., Takeda, K., Morohashi, M. and Kawamura, M. (1990). Sitedirected mutagenesis of Asp-376, the catalytic phosphorylation site, and Lys-507, the putative ATP-binding site, of the alpha-subunit of Torpedo califomica Na+/K(+)- ATPase. Biochim Biophys Acta; 1021(2): 157-60.
    • Okisaka, S. and Kuwabara, T. (1974). Selective destruction of the pigmented epithelium in the ciliary body of the eye. Science; 184(143): 1298-9.
    • Oku, A., Ueta, K., Arakawa, K., Kano-Ishihara, T., Matsumoto, M. et al. (2000). Antihyperglycemic effect of T-1095 via inhibition of renal Na+-glucose cotransporters in streptozotocin-induced diabetic rats. Biol Pharm Bull; 23(12): 1434-7.
    • Omer, S., Lomthaisong, K. and Bicknell, A.B. (2002). Identification of two alternate splice variants of a novel serine protease expressed in steroidogenic tissues. Endocr Res; 28(4): 339-48.
    • Ono, Y., Aoki, S., Ohnishi, K., Yasuda, T., Kawano, K. et al. (1998). Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res Clin Pract; 41(2): 131-7.
    • Orci, L., Ravazzola, M., Baetens, D., Inman, L., Amherdt, M. et al. (1990). Evidence that down-regulation of beta-cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia. Proc Natl Acad Sci US A; 87(24): 9953-7.
    • Orci, L., Thorens, B., Ravazzola, M. and Lodish, H.F. (1989). Localization o f the pancreatic beta cell glucose transporter to specific plasma membrane domains. Science; 245(4915): 295-7.
    • Oulianova, N. and Berteloot, A. (1996). Sugar transport heterogeneity in the kidney: two independent transporters or different transport modes through an oligomeric Protein? 1. Glucose transport studies. J Membr Biol; 153(3): 181-94.
    • Oulianova, N., Falk, S. and Berteloot, A. (2001). Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney. J Membr Biol; 179(3): 223-42.
    • Panayotova-Heiermann, M., Eskandari, S., Turk, E., Zampighi, G.A. and Wright, E.M. (1997). Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter. JB iol Chem; 272(33): 20324-7.
    • Panayotova-Heiermann, M., Loo, D.D. and Wright, E.M. (1995). Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J Biol Chem; 270(45): 27099-105.
    • Panayotova-Heiermann, M. and Wright, E.M. (2001). Mapping the urea channel through the rabbit Na(+)-glucose cotransporter SGLT1 . J Physiol; 535(Pt 2): 419-25.
    • Pappenheimer, J.R. and Setchell, B.P. (1973). Cerebral glucose transport and oxygen consumption in sheep and rabbits. J Physiol; 233(3): 529-51.
    • Pardridge, W.M., Boado, R.J. and Farrell, C.R. (1990b). Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. JB iol Chem; 265(29): 18035-40.
    • Parent, L., Supplisson, S., Loo, D.D. and Wright, E.M. (1992). Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol; 125(1): 49-62.
    • Pascuzzo, G.J., Johnson, J.E. and Pautler, E.L. (1980). Glucose transport in isolated mammalian pigment epithelum. Exp Eye Res; 30(1): 53-8.
    • Payne, J., Maher, F., Simpson, I., Mattice, L. and Davies, P. (1997). Glucose transporter Glut 5 expression in microglial cells. Glia; 21(3): 327-31.
    • Pedemonte, C.H. and Kaplan, J.H. (1990). Chemical modification as an approach to elucidation of sodium pump structure-function relations. Am J Physiol; 258(1 Pt 1): Cl-23.
    • Pedersen, O., Bak, J.F., Andersen, P.H., Lund, S., Moller, D.E. et al. (1990). Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle o f patients with obesity or NIDDM. Diabetes; 39(7): 865-70.
    • Pedersen, O., Kahn, C.R., Flier, J.S. and Kahn, B.B. (1991). High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut 4) in fat cells of rats. Endocrinology; 129(2): 771-7.
    • Pederson, J.E. (1982). Fluid permeability of monkey ciliary epithelium in vivo. Invest Ophthalmol Vis Sci; 23(2): 176-80.
    • Phay, J.E., Hussain, H.B. and Moley, J.F. (2000). Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics; 66(2): 217-20.
    • Phillips, S.L., DeRubertis, F.R. and Craven, P.A. (1999). Regulation of the laminin Cl promoter in cultured mesangial cells. Diabetes; 48(10): 2083-9.
    • Pino, R.M. and Thouron, C.L. (1983). Vascular permeability in the rat eye to endogenous albumin and immunoglobulin G (IgG) examined by immunohistochemical methods. J Histochem Cytochem; 31(3): 411-6.
    • Piroli, G.G., Grillo, C.A., Hoskin, E.K., Znamensky, V., Katz, E.B. et al. (2002). Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J Comp Neurol; 452(2): 103-14.
    • Pokupec, R., Kalauz, M., Turk, N. and Turk, Z. (2003). Advanced glycation endproducts in human diabetic and non-diabetic cataractous lenses. Graefes Arch Clin Exp Ophthalmol; 241(5): 378-84.
    • Postic, C., Burcelin, R., Rencurel, F., Pegorier, J.P., Loizeau, M. et al. (1993). Evidence for a transient inhibitory effect of insulin on GLUT2 expression in the liver: studies in vivo and in vitro. Biochem J; 293((Pt 1)): 119-24.
    • Poulaki, V., Joussen, A.M., Mitsiades, N., Mitsiades, C.S., Iliaki, E.F. et al. (2004). Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol; 165(2): 457-69.
    • Poulsen, P., Vaag, A.A., Kyvik, K.O., Moller Jensen, D. and Beck-Nielsen, H. (1997). Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia; 40(4): 439-46.
    • Raichle, M.E., Larson, K.B., Phelps, M.E., Grubb, R.L., Jr., welch, M.J. et al. (1975). In vivo measurement of brain glucose transport and metabolism employing glucose- -11C. Am J Physiol; 228(6): 1936-48.
    • Rajah, T.T., Olson, A.L. and Grammas, P. (2001). Differential glucose uptake in retinaand brain-derived endothelial cells. Microvasc Res; 62(3): 236-42.
    • Rajakumar, R.A., Thamotharan, S., Menon, R.K. and Devaskar, S.U. (1998). Spl and Sp3 regulate transcriptional activity of the facilitative glucose transporter isoform-3 gene in mammalian neuroblasts and trophoblasts. JB io l Chem; 273(42): 27474-83.
    • Rao, P., Cozar-Castellano, I., Roccisana, J., Vasavada, R.C. and Garcia-Ocana, A. (2004). Hepatocyte growth factor gene therapy for islet transplantation. Expert Opin Biol Ther; 4(4): 507-18.
    • Raval, P. (1994). Qualitative and quantitative determination o f mRNA. J Pharmacol Toxicol Methods.; 32(3): 125-7.
    • Robinson, S. and Kessling, A. (1992). Diabetes secondary to genetic disorders. Baillieres Clin Endocrinol Metab; 6(4): 867-98.
    • Roeder, L.M., Tildon, J.T. and Williams, I.B. (1985). Transport o f 2-deoxy-D-glucose by dissociated brain cells. Brain Res; 345(2): 298-305.
    • Rogers, S., Chandler, J.D., Clarke, A.L., Petrou, S. and Best, J.D. (2003b). Glucose transporter GLUT 12-functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun; 308(3): 422-6.
    • Rogers, S., Docherty, S.E., Slavin, J.L., Henderson, M.A. and Best, J.D. (2003a). Differential expression of GLUT12 in breast cancer and normal breast tissue. Cancer Lett, 193(2): 225-33.
    • Rogers, S., Macheda, M.L., Docherty, S.E., Carty, M.D., Henderson, M.A. et a l (2002). Identification of a novel glucose transporter-like protein-GLUT-12. Am J Physiol Endocrinol Metab', 282(3): E733-8.
    • Roll, P., Massacrier, A., Pereira, S., Robaglia-Schlupp, A., Cau, P. et al. (2002). New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (infantile convulsions and choreoathetosis) and BFIC (benign familial infantile convulsions) families. Gene; 285(1-2): 141-8.
    • Rollins, B.J., Morrison, E.D., Usher, P. and Flier, J.S. (1988). Platelet-derived growth factor regulates glucose transporter expression. JB iol Chem; 263(32): 16523-6.
    • Rosenberg, I.M. (1996). Tracking the target proteins. In: Protein Analysis and Purification (Ed, Rosenberg, I.M.). Boston: Birkhauser, pp. 19-31.
    • Rosenberg, I.M. (1996). Transfer and detection of proteins on membrane supports. In: Protein Analysis and Purification (Ed, Rosenberg, I.M.). Boston: Birkhauser, pp. 153- 182.
    • Rotimi, C., Daniel, H., Zhou, J., Obisesan, A., Chen, G. et a l (2003). Prevalence and determinants of diabetic retinopathy and cataracts in West African type 2 diabetes patients. Ethn Dis; 13(2 Suppl 2): SI 10-7.
    • Royer, C., Lachuer, J., Crouzoulon, G., Roux, J., Peyronnet, J. et a l (2000). Effects of gestational hypoxia on mRNA levels of Glut3 and Glut4 transporters, hypoxia inducible factor-1 and thyroid hormone receptors in developing rat brain. Brain Res; 856(1-2): 119-28.
    • Rudich, A., Konrad, D., Torok, D., Ben-Romano, R., Huang, C. et a l (2003). Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia; 46(5): 649-58.
    • Sabbatini, A.R., Wemer, P.A., Guha, C., Paddock, G.V. and Galbraith, R.M. (1993). The vitamin D-binding protein gene: quantitation of amplified nucleic acids by ELISA. Biotechniques; 15(4): 706-13.
    • Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R. et a l (1988). Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science; 239(4839): 487-91.
    • Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T. et a l (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science; 230(4732): 1350-4.
    • Sankar, R., Thamotharan, S., Shin, D., Moley, K.H. and Devaskar, S.U. (2002). Insulinresponsive glucose transporters-GLUT8 and GLUT4 are expressed in the developing mammalian brain. Brain Res Mol Brain Res; 107(2): 157-65.
    • Santer, R., Schneppenheim, R., Dombrowski, A., Gotze, H., Steinmann, B. et a l (1997). Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet; 17(3): 324-6.
    • Sasaki, T., Minoshima, S., Shiohama, A., Shintani, A., Shimizu, A. et al. (2001). Molecular cloning of a member of the facilitative glucose transporter gene family GLUT11 (SLC2A11) and identification of transcription variants. Biochem Biophys Res Commun; 289(5): 1218-24.
    • Sato, M. and Mueckler, M. (1999). A conserved amino acid motif (R-X-G-R-R) in the Glutl glucose transporter is an important determinant of membrane topology. JB iol Chem; 274(35): 24721-5.
    • Schalin-Jantti, C., Yki-Jarvinen, H., Koranyi, L., Bourey, R., Lindstrom, J. et a l (1994). Effect o f insulin on GLUT-4 mRNA and protein concentrations in skeletal muscle of patients with NIDDM and their first-degree relatives. Diabetologia; 37(4): 401-7.
    • Schalkwijk, C.G., Posthuma, N., ten Brink, H.J., ter Wee, P.M. and Teerlink, T. (1999). Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids. Perit Dial Int; 19(4): 325-33.
    • Schleicher, E.D. and Weigert, C. (2000). Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int Suppl; 77: S I3-8.
    • Schlingemann, R.O., Hofinan, P., Klooster, J., Blaauwgeers, H.G., Van der Gaag, R. et al (1998). Ciliary muscle capillaries have blood-tissue barrier characteristics. Exp Eye Res; 66(6): 747-54.
    • Schultheis, P.J. and Lingrel, J.B. (1993). Substitution of transmembrane residues with hydrogen-bonding potential in the alpha subunit of Na,K-ATPase reveals alterations in ouabain sensitivity. Biochemistry; 32(2): 544-50.
    • Schultz, R.O., Peters, M.A., Sobocinski, K., Nassif, K. and Schultz, K.J. (1983). Diabetic keratopathy as a manifestation of peripheral neuropathy. Am J Ophthalmol; 96(3): 368- 71.
    • Schurmann, A., Doege, H., Ohnimus, H., Monser, V., Buchs, A. et a l (1997). Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function. Biochemistry; 36(42): 12897-902.
    • Seyoum, B., Mengistu, Z., Berhanu, P., Abdulkadir, J., Feleke, Y. et al. (2001). Retinopathy in patients of Tikur Anbessa Hospital diabetic clinic. Ethiop Med J; 39(2): 123-31.
    • Shepherd, E.J., Helliwell, P.A., Lister, N., Mace, O.J., Morgan, E.L. et a l (2004). Stress and glucocorticoid inhibit apical GLUT2-trafficking and intestinal glucose absorption in rat small intestine. J Physiol.
    • Shepherd, P.R., Gibbs, E.M., Wesslau, C., Gould, G.W. and Kahn, B.B. (1992). Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation. Diabetes; 41(10): 1360-5.
    • Shepherd, P.R. and Kahn, B.B. (1999). Glucose transporters and insulin actionimplications for insulin resistance and diabetes mellitus. N Engl JM ed; 341(4): 248-57.
    • Shetty, M., Ismail-Beigi, N., Loeb, J.N. and Ismail-Beigi, F. (1993). Induction of GLUT1 mRNA in response to inhibition of oxidative phosphorylation. Am J Physiol; 265(5 Pt 1): C l224-9.
    • Sone, H., Deo, B.K. and Kumagai, A.K. (2000). Enhancement o f glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci; 41(7): 1876-84.
    • Spray, D.C. and Bennett, M.V. (1985). Physiology and pharmacology o f gap junctions. Annu Rev Physiol; 47: 281-303.
    • Stanga, P.E., Boyd, S.R. and Hamilton, A.M. (1999). Ocular manifestations o f diabetes mellitus. Curr Opin Ophthalmol; 10(6): 483-9.
    • Steane, S.E., Mylott, D. and White, M.K. (1998). Regulation of a heterologous glucose transporter promoter in chicken embryo fibroblasts. Biochem Biophys Res Commun; 252(2): 318-23.
    • Stewart, P.A., Hayakawa, K. and Farrell, C.L. (1994). Quantitation of blood-brain barrier ultrastructure. Microsc Res Tech; 27(6): 516-27.
    • Stitt, A.W. (2001). Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol', 85(6): 746-53.
    • Stitt, A.W., Anderson, H.R., Gardiner, T.A., McIntyre, I. and Archer, D.B. (1994). The combined effects of diabetes and ionising radiation on the rat retina: an ultrastructural study. Curr Eye Res\ 13(1): 79-86.
    • Stitt, A.W., Moore, J.E., Sharkey, J.A., Murphy, G., Simpson, D.A. et al. (1998). Advanced glycation end products in vitreous: Structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Vis Sci; 39(13): 2517-23.
    • Stoesser, G., Tuli, M.A., Lopez, R. and Sterk, P. (1999). The EMBL Nucleotide Sequence Database. Nucleic Acids Res; 27(1): 18-24.
    • Stramm, L.E. and Pautler, E.L. (1982). Transport of 3-O-methylglucose in isolated rat retinal pigment epithelial cells. Exp Eye Res; 35(2): 91-7.
    • Strange, K. (1992). Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol; 3(1): 12-27.
    • Studer, R.K., Craven, P.A. and DeRubertis, F.R. (1993). Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in highglucose medium. Diabetes; 42(1): 118-26.
    • Swamy-Mruthinti, S., Shaw, S.M., Zhao, H.R., Green, K. and Abraham, E.C. (1999). Evidence of a glycemic threshold for the development of cataracts in diabetic rats. Curr Eye Res; 18(6): 423-9.
    • Tabatabai, N.M., Blumenthal, S.S., Lewand, D.L. and Petering, D.H. (2001). Differential regulation of mouse kidney sodium-dependent transporters mRNA by cadmium. Toxicol Appl Pharmacol; 177(3): 163-73.
    • Takagi, H., Tanihara, H., Seino, Y. and Yoshimura, N. (1994). Characterization of glucose transporter in cultured human retinal pigment epithelial cells: gene expression and effect of growth factors. Invest Ophthalmol Vis Sci; 35(1): 170-7.
    • Takahashi, H., Kaminski, A.E. and Zieske, J.D. (1996). Glucose transporter 1 expression is enhanced during corneal epithelial wound repair. Exp Eye Res; 63(6): 649-59.
    • Takahashi, H., Ohara, K., Ohmura, T., Takahashi, R. and Zieske, J.D. (2000). Glucose transporter 1 expression in comeal wound repair under high serum glucose level. Jpn J Ophthalmol; 44(5): 470-4.
    • Takata, K. (1996). Glucose transporters in the transepithelial transport of glucose. J Electron Microsc (Tokyo); 45(4): 275-84.
    • Takata, K., Hirano, H. and Kasahara, M. (1997). Transport of glucose across the bloodtissue barriers. Int Rev Cytol; 172: 1-53.
    • Takata, K., Kasahara, M., Oka, Y. and Hirano, H. (1993). Mammalian sugar transporters: Their localization and link to cellular fucntions. Acta Histochem Cytochem; (26): 165- 178.
    • Takata, K., Kasahara, T., Kasahara, M., Ezaki, O. and Hirano, H. (1990). Erythrocyte/HepG2-type glucose transporter is concentrated in cells of blood-tissue barriers. Biochem Biophys Res Commun; 173(1): 67-73.
    • Tsukamoto, H., Mishima, H.K., Kurokawa, T., Kiuchi, Y., Sato, E. et a l (1995). Isoforms of glucose transporter in the iris-ciliary body. Jpn J Ophthalmol; 39(3): 242-7.
    • Turczynski, B., Michalska-Malecka, K., Slowinska, L., Szczesny, S. and Romaniuk, W. (2003). Correlations between the severity of retinopathy in diabetic patients and whole blood and plasma viscosity. Clin Hemorheol Microcirc; 29(2): 129-37.
    • Turk, E., Kim, O., le Coutre, J., Whitelegge, J.P., Eskandari, S. et a l (2000). Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. JB io l Chem; 275(33): 25711-6.
    • Turk, E. and Wright, E.M. (1997). Membrane topology motifs in the SGLT cotransporter family. J Membr Biol; 159(1): 1-20.
    • Turk, E., Zabel, B., Mundlos, S., Dyer, J. and Wright, E.M. (1991). Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature; 350(6316): 354-6.
    • Turner, R.J. and Moran, A. (1982a). Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol; 70(1): 37-45.
    • Wandel, S., Buchs, A., Schurmann, A., Summers, S.A., Powers, A.C. et al. (1996). Glucose transport activity and ligand binding (cytochalasin B, IAPS-forskolin) of chimeric constructs o f GLUT2 and GLUT4 expressed in COS-7-cells. Biochim Biophys Acta; 1284(1): 56-62.
    • Watanabe, T., Mio, Y., Hoshino, F.B., Nagamatsu, S., Hirosawa, K. et al. (1994). GLUT2 expression in the rat retina: localization at the apical ends of Muller cells. Brain Res; 655(1-2): 128-34.
    • Wessells, N.K., Spooner, B.S., Ash, J.F., Bradley, M.O., Luduena, M.A. et al. (1971). Microfilaments in cellular and developmental processes. Science; 171(967): 135-43.
    • Wright, E.M., Martin, M.G. and Turk, E. (2003). Intestinal absorption in health and disease-sugars. Best Pract Res Clin Gastroenterol; 17(6): 943-56.
    • Zhao, F.Q., Glimm, D.R. and Kennedy, J.J. (1993). Distribution of mammalian facilitative glucose transporter messenger RNA in bovine tissues. Int J Biochem; 25(12): 1897-903.
    • Zhou, J. and Bondy, C.A. (1993). Placental glucose transporter gene expression and metabolism in the rat. J Clin Invest; 91(3): 845-52.
    • Zieman, S. and Kass, D. (2004). Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease. Congest Heart Fail; 10(3): 144-9; quiz 150-1.
    • Zisman, A., Peroni, O.D., Abel, E.D., Michael, M.D., Mauvais-Jarvis, F. et al. (2000). Targeted disruption o f the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med; 6(8): 924-8.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article