LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Awonusika, Richard Olu (2016)
Languages: English
Types: Doctoral thesis
Subjects: QA440
The text of the abstract cannot be copied here. Please refer to full thesis pdf
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction and Overview 1 1.1 Historical Background of Non-Euclidean Geometries . . . . . . . . . . . . . . . . 1 1.2 Riemannian Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 The Heat Kernels on Compact Symmetric Spaces . . . . . . . . . . . . . . . . . . 4 1.4 Eigenfunctions of the Laplacian on the Sphere . . . . . . . . . . . . . . . . . . . . 7 1.5 The Upper Half-Space Model of the Hyperbolic Space . . . . . . . . . . . . . . . 14 1.5.1 Eigenfunctions of the Laplacian in Cartesian Coordinates . . . . . . . . . 16 1.5.2 Eigenfunctions of the Laplacian in Geodesic Polar Coordinates . . . . . . 17 1.5.3 The Heat Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.4 The Resolvent Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.5 The Wave Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6 The Poincare Unit Ball Model of the Hyperbolic Space . . . . . . . . . . . . . . . 23 1.7 The Poisson Summation Formula as a Trace Formula . . . . . . . . . . . . . . . . 24 1.8 The Selberg Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.9 Outline and Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 27
    • 2 The Spectrum and Geometry of Hyperbolic Surfaces 33 2.1 The Upper Half-Plane and the Group SL(2; R) . . . . . . . . . . . . . . . . . . . 34 2.1.1 Classi cations of Isometries of the Upper Half-Plane . . . . . . . . . . . . 35 2.1.2 The Iwasawa Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.3 Hyperbolic Riemann Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2 Automorphic Forms for the Modular Group SL(2; Z) . . . . . . . . . . . . . . . . 47 2.2.1 The Fourier Expansion of Nonholomorphic Eisenstein Series . . . . . . . . 50 2.2.2 Analytic Continuation and Functional Equation of E(z; s) . . . . . . . . . 53
    • 3 Trace Formulae for Hyperbolic Surfaces and Applications 56 3.1 The Trace Formula for a Compact Hyperbolic Surface . . . . . . . . . . . . . . . 57 3.1.1 Computation of the Trace for the Identity Element . . . . . . . . . . . . . 62 3.1.2 Computation of the Trace for the Hyperbolic Element . . . . . . . . . . . 62 3.2 The Trace Formula for a Noncompact Hyperbolic Surface . . . . . . . . . . . . . 64 3.2.1 Selberg Spectral Expansion of Automorphic Functions . . . . . . . . . . . 65 3.2.2 The Maass-Selberg Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.3 Computation of the Spectral Trace: The Continuous Spectrum . . . . . . 68 3.2.4 Computation of the Trace for the Parabolic Elements . . . . . . . . . . . 70 3.3 The Parseval Inner Product Formula . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4 Zeta Functions and Determinant of the Laplacian . . . . . . . . . . . . . . . . . . 83 3.4.1 The Heat Trace and Eigenvalue Asymptotics . . . . . . . . . . . . . . . . 83 3.4.2 The Trace of the Resolvent and Selberg Zeta Functions . . . . . . . . . . 87 3.4.3 Zeta Regularised Determinant of the Laplacian . . . . . . . . . . . . . . . 92
    • 4 Poisson Integral Representations in Euclidean and Non-Euclidean spaces 100 4.1 Eigenfunctions of the Laplacian in the Hyperbolic Space . . . . . . . . . . . . . . 101 4.2 Special Functions Representation of the Poisson Kernel . . . . . . . . . . . . . . 103 4.3 The Poisson Integral Formula for Sn . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4 Integral Representations of the Euclidean Poisson Kernel . . . . . . . . . . . . . 108 4.5 Series Representations of the Poisson Kernel on Dn . . . . . . . . . . . . . . . . . 117 4.6 Summation of Certain Series Involving Legendre Polynomials . . . . . . . . . . . 121
    • 5 The Gegenbauer Transform and Heat Kernels on Sn and CPn 126 5.1 The Gegenbauer Transform and its Inversion Formula . . . . . . . . . . . . . . . 126 5.2 The Heat Kernel on Sn via the Gegenbauer Transform . . . . . . . . . . . . . . . 128 5.3 Minakshisundaram-Pleijel Heat Coe cients . . . . . . . . . . . . . . . . . . . . . 134 5.4 Integral Representations of the Heat Kernels on CPn . . . . . . . . . . . . . . . 144 5.5 The Heat Trace Formulae via the Euclidean Poisson Kernel . . . . . . . . . . . . 149
    • 1 2 [Cm (x)]2 dx = 1 2 Ck (x) dx = 0; k > 0;
    • [17] Baker, A. (2012). Matrix Groups: An Introduction to Lie Group Theory. Springer.
    • [18] Barnes, E. W. (1901). The theory of the double gamma function. Phil. Trans. Royal Soc. London, 196:265{387.
    • [19] Bateman, H., Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1953a). Higher Transcendental Functions, Vol. I. McGraw-Hill, New York.
    • [20] Bateman, H., Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1953b). Higher Transcendental Functions, Vol. II. McGraw-Hill, New York.
    • [21] Bateman, P. and Grosswald, E. (1964). On Epstein's zeta function. Acta Arith., 9(4):365{ 373.
    • [22] Beardon, A. F. (1983). The Geometry of Discrete Groups, Graduate Texts in Mathematics, Vol. 91. Springer, New York.
    • [23] Beckner, W. (1992). Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. Proc. Nat. Acad. Sci., 89(11):4816{4819.
    • [24] Beckner, W. (1993). Sharp Sobolev inequalities on the sphere and the Moser{Trudinger inequality. Anna. Math., 138(1):213{242.
    • [25] Berard, P. H. (1977). On the wave equation on a compact Riemannian manifold without conjugate points. Math Z., 155(3):249{276.
    • [26] Berger, M., Gauduchon, P., and Mazet, E. (1971). Le spectre d'une variete Riemannienne. Springer.
    • [27] Bergeron, N. (2016). The Spectrum of Hyperbolic Surfaces. Springer.
    • [28] Birman, M. S. and Solomjak, M. Z. (2012). Spectral Theory of Self-Adjoint Operators in Hilbert Space. Springer.
    • [29] Blau, S. K. and Clements, M. (1987). Determinants of Laplacians for world sheets with boundaries. Nuclear Physics B, 284:118{130.
    • [30] Borthwick, D. (2007). Spectral Theory of In nite-Area Hyperbolic Surfaces. Springer.
    • [31] Bump, D. (1998). Automorphic Forms and Representations. Cambridge University Press.
    • [32] Buser, P. (1992). Geometry and Spectra of Compact Riemann Surfaces. Springer.
    • [33] Byczkowski, T., Graczyk, P., Stos, A., et al. (2007). Poisson kernels of half-spaces in real hyperbolic spaces. Revista Matematica Iberoamericana, 23(1):85{126.
    • [34] Byczkowski, T. and Malecki, J. (2007). Poisson kernel and Green function of the ball in real hyperbolic spaces. Potential Analysis, 27(1):1{26.
    • [35] Cahn, R. S. and Wolf, J. A. (1976). Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Comm. Math. Helv., 51(1):1{21.
    • [36] Cammarota, V. and Orsingher, E. (2013). Hitting spheres on hyperbolic spaces. Theory of Probability & Its Applications, 57(3):419{443.
    • [37] Chang, S.-Y. A. (2004). Non-Linear Elliptic Equations in Conformal Geometry. European Mathematical Society.
    • [38] Chang, S.-Y. A. and Yang, P. C. (1995). Extremal metrics of zeta function determinants on 4-man lds. Ann. Math., 142(1):171{212.
    • [39] Chang, S.-Y. A. and Yang, P. C. (2002). Non-linear partial di erential equations in conformal geometry. arXiv preprint math/0212394.
    • [40] Chang, S.-Y. A. and Yang, P. C. (2003). The inequality of Moser and Trudinger and applications to conformal geometry. Comm. Pure Appl. Math., 56(8):1135{1150.
    • [41] Chavel, I. (1984). Eigenvalues in Riemannian Geometry. Academic Press.
    • [42] Chazarain, J. (1974). Formule de Poisson pour les varietes Riemanniennes. Invent. Math., 24(1):65{82.
    • [43] Cohl, H. S. and Dominici, D. E. (2011). Generalized Heine's identity for complex Fourier series of binomials. Proc. R. Soc. A, 467:333{345.
    • [44] Conte, S. (1955). Gegenbauer transforms. Quart. J. Math., 6(1):48{52.
    • [45] Craioveanu, M., Puta, M., and Rassias, T. M. (2013). Old and New Aspects in Spectral Geometry. Springer.
    • [46] Curtis, M. L. (2012). Matrix Groups. Springer.
    • [48] Deitmar, A. and Echterho , S. (2009). Principles of Harmonic Analysis. Springer.
    • [49] D'Hoker, E. and Phong, D. (1986). On determinants of Laplacians on Riemann surfaces. Comm. Math. Phys, 104(4):537{545.
    • [50] Dixon, J. and Lacroix, R. (1973). Some useful relations using spherical harmonics and Legendre polynomials. J. Phys A, 6(8):1119.
    • [56] Efrat, I. (1988). Determinants of Laplacians on surfaces of nite volume. Comm. Math. Phys, 119(3):443{451.
    • [57] Elstrodt, J., Grunewald, F., and Mennicke, J. (1998). Groups Acting on Hyperbolic Space: Harmonic Analysis and Number Theory. Springer.
    • [58] Faraut, J. (2008). Analysis on Lie Groups: An Introduction. Cambridge University Press.
    • [59] Fegan, H. D. (1991). Introduction to Compact Lie Groups. World Scienti c.
    • [60] Flensted-Jensen, M. (1977). Spherical functions on a simply connected semisimple Lie group. Math. Anna., 228(1):65{92.
    • [61] Fock, V. (1943). On the representation of an arbitrary function by an integral involving Legendre's functions with a complex index. In Dokl. Akad. Nauk SSSR, pages 279{283.
    • [63] Gilkey, P. B. (2004). Asymptotic Formulae in Spectral Geometry. CRC Press.
    • [64] Glasser, M. L. and Montaldi, E. (1994). Some integrals involving Bessel functions. J. Math. Anal. Appl., 183(3):577{590.
    • [65] Goldfeld, D. (1981). On convolutions of non-holomorphic Eisenstein series. Adv. Math., 39(3):240{256.
    • [78] Helgason, S. (1974). Eigenspaces of the Laplacian; integral representations and irreducibility. J. Funct. Anal., 17(3):328{353.
    • [97] Kubota, T. (1973). Elementary Theory of Eisenstein Series. Kodansha.
    • [98] Lang, S. (1985). SL2(R). Springer.
    • [99] Lax, P. D. and Phillips, R. S. (1982). The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal., 46(3):280{350.
    • [100] Lebedev, N. N. (1965). Special Functions and their Applications. Prentice-Hall, Inc.
    • [101] Lee, J. M. (2009). Manifolds and Di erential Geometry. AMS Providence.
    • [102] Levitan, B. M. (1987). Asymptotic formulae for the number of lattice points in Euclidean and Lobachevskii spaces. Russian Math. Surveys, 42(3):13{42.
    • [103] Li, P. (2012). Geometric analysis. Cambridge University Press.
    • [104] Luo, W. (2005). On zeros of the derivative of the Selberg zeta function. American J. Math., pages 1141{1151.
    • [117] Mulholland, H. (1928). An asymptotic expansion for P01(2n + 1)e Phil. Soc., 24(02):280{289.
    • [120] Muller, W. (2010). Spectral theory of automorphic forms. Preprint.
    • [139] Ratcli e, J. (2006). Foundations of Hyperbolic Manifolds. Springer.
    • [140] Riemann, B. (1953). Collected Works of Bernhard Riemann. Dover.
    • [141] Riesz, F. and Nagy, B. S. (1955). Functional Analysis. Frederick Ungar Publishing Co.
    • [143] Sarnak, P. (1987). Determinants of Laplacians. Comm. Math. Phys, 110(1):113{120.
    • [176] Whittaker, E. T. and Watson, G. N. (1996). A Course of Modern Analysis. Cambridge University Press.
    • [177] Widder, D. V. (1959). The Laplace Transform. Princeton University Press.
    • [178] Wolfe, W. (1979). The asymptotic distribution of lattice points in hyperbolic space. J. Funct. Anal., 31(3):333{340.
    • [179] Zagier, D. (1981a). Eisenstein series and the Riemann zeta-function. In Automorphic forms, representation theory and arithmetic, pages 275{301. Springer.
    • [180] Zagier, D. (1981b). The Rankin-Selberg method for automorphic functions which are not of rapid decay. J. Fac. Sci. Univ. Tokyo Sect. IA Math, 28(3):415{437.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article