LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ostermann, Simon; Kecskemeti, Gabor; Prodan, Radu (2016)
Publisher: Wiley
Languages: English
Types: Article
Subjects: QA75, QA76
Scientific workflow systems face new challenges when supporting Cloud computing, as the information on the state of the used infrastructures is much less detailed than before. Thus, organising virtual infrastructures in a way that not only supports the workflow execution but also optimises it for several service level objectives (e.g. maximum energy consumption limit, cost, reliability, availability) become reliant on good Cloud modelling and prediction information. While simulators were successfully aiding research on such workflow management systems, the currently available Cloud related simulation toolkits suffer from several issues (e.g. scalability and narrow scope) that hinder their applicability. To address these issues, this article introduces techniques for unifying two existing simulation toolkits by first analysing the problems with the current simulators, and then by illustrating the problems faced by workflow systems. We use for this purpose the example of the ASKALON environment, a scientific workflow composition and execution tool for cloud and grid environments. We illustrate the advantages of a workflow system with directly integrated simulation back-end and how the unification of the selected simulators does not affect the overall workflow execution simulation performance. Copyright © 2015 John Wiley & Sons, Ltd.

Share - Bookmark

Funded by projects

Cite this article