LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Anstey, James A.; Shepherd, Theodore G.; Scinocca, John F. (2010)
Publisher: American Meteorological Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anstey, J. A., and T. G. Shepherd, 2008: Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions. Geophys. Res. Lett., 35, L22810, doi:10.1029/ 2008GL035721.
    • Baldwin, M. P., and T. J. Dunkerton, 1998: Quasi-biennial modulation of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett., 25, 3343-3346.
    • --, and --, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 937-30 946.
    • --, and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32, L09806, doi:10.1029/2004GL022328.
    • --, and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179-229.
    • --, D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O'Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636-640.
    • Beagley, S. R., J. de Grandpre´, J. N. Koshyk, N. A. McFarlane, and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model. Atmos.- Ocean, 35, 293-331.
    • Bridger, A. F., 1984: A numerical test of connections between the stratospheric sudden warming and the quasi-biennial oscillation. J. Geophys. Res., 89, 4826-4832.
    • Calvo, N., M. A. Giorgetta, and C. Pen˜ a-Ortiz, 2007: Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations. J. Geophys. Res., 112, D10124, doi:10.1029/2006JD007844.
    • Campbell, L. J., and T. G. Shepherd, 2005: Constraints on wave drag parameterization schemes for simulating the quasi-biennial oscillation. Part I: Gravity wave forcing. J. Atmos. Sci., 62, 4178-4195.
    • Chen, P., 1996: The influences of zonal flow on wave breaking and tropical-extratropical interaction in the lower stratosphere. J. Atmos. Sci., 53, 2379-2392.
    • Dunkerton, T. J., 1990: Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 68, 499-508.
    • --, 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 053-26 076.
    • --, and M. P. Baldwin, 1991: Quasi-biennial modulation of planetary-wave fluxes in the Northern Hemisphere winter. J. Atmos. Sci., 48, 1043-1061.
    • Garcia, R. R., and S. Solomon, 1987: A possible relationship between interannual variability in Antarctic ozone and the quasibiennial oscillation. Geophys. Res. Lett., 14, 848-851.
    • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHEM5 model. J. Climate, 19, 3882-3901.
    • Gray, L. J., 2003: The influence of the equatorial upper stratosphere on stratospheric sudden warmings. Geophys. Res. Lett., 30, 1166, doi:10.1029/2002GL016430.
    • --, E. F. Drysdale, T. J. Dunkerton, and B. N. Lawrence, 2001a: Model studies of the interannual variability of the northernhemisphere stratospheric winter circulation: The role of the quasibiennial oscillation. Quart. J. Roy. Meteor. Soc., 127, 1413-1432.
    • --, S. J. Phipps, T. J. Dunkerton, M. P. Baldwin, E. F. Drysdale, and M. R. Allen, 2001b: A data study of the influence of the equatorial upper stratosphere on northern-hemisphere stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 127, 1985-2003.
    • --, S. Sparrow, M. Juckes, A. O'Neill, and D. G. Andrews, 2003: Flow regimes in the winter stratosphere of the northern hemisphere. Quart. J. Roy. Meteor. Soc., 129, 925-945.
    • --, S. Crooks, C. Pascoe, S. Sparrow, and M. Palmer, 2004: Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61, 2777-2796.
    • Hamilton, K., 1998: Effects of an imposed quasi-biennial oscillation in a comprehensive troposphere-stratosphere-mesosphere general circulation model. J. Atmos. Sci., 55, 2393-2418.
    • --, A. Hertzog, F. Vial, and G. Stenchikov, 2004: Longitudinal variation of the stratospheric quasi-biennial oscillation. J. Atmos. Sci., 61, 383-402.
    • Hampson, J., and P. Haynes, 2006: Influence of the equatorial QBO on the extratropical stratosphere. J. Atmos. Sci., 63, 936-951.
    • Hitchman, M. H., and A. S. Huesmann, 2009: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci., 66, 935-946.
    • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200-2208.
    • --, and J. Austin, 1991: The influence of the equatorial QBO on sudden stratospheric warmings. J. Atmos. Sci., 48, 607-618.
    • Horinouchi, T., and S. Yoden, 1998: Wave-mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55, 502-526.
    • Huesmann, A. S., and M. H. Hitchman, 2001: The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures. J. Geophys. Res., 106, 11 859-11 874.
    • Karpetchko, A., and G. Nikulin, 2004: Influence of early winter upward wave activity flux on midwinter circulation in the stratosphere and troposphere. J. Climate, 17, 4443-4452.
    • Kodera, K., 1991: The solar and equatorial QBO influences on the stratospheric circulation during the early northern-hemisphere winter. Geophys. Res. Lett., 18, 1023-1026.
    • --, M. Chiba, and K. Shibata, 1991: A general circulation model study of the solar and QBO modulation of the stratospheric circulation during the northern hemisphere winter. Geophys. Res. Lett., 18, 1209-1212.
    • Labitzke, K., 1987: Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett., 14, 535-537.
    • --, and H. van Loon, 1988: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere winter. J. Atmos. Terr. Phys., 50, 197-206.
    • Lindzen, R., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 1095-1107.
    • Logan, J. A., and Coauthors, 2003: Quasibiennial oscillation in tropical ozone as revealed by ozonesondes and satellite data. J. Geophys. Res., 108, 4244, doi:10.1029/2002JD002170.
    • Lu, H., M. P. Baldwin, L. J. Gray, and M. J. Jarvis, 2008: Decadalscale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res., 113, D10114, doi:10.1029/ 2007JD009647.
    • Maruyama, T., 1991: Annual and QBO-synchronized variations of lower-stratospheric equatorial wave activity over Singapore during 1961-1989. J. Meteor. Soc. Japan, 69, 219-231.
    • Matthes, K., U. Langematz, L. J. Gray, K. Kodera, and K. Labitzke, 2004: Improved 11-year solar signal in the Freie Universita¨t Berlin Climate Middle Atmosphere Model (FUB-CMAM). J. Geophys. Res., 109, D06101, doi:10.1029/2003JD004012.
    • Naito, Y., and I. Hirota, 1997: Interannual variability of the northern winter stratospheric circulation related to the QBO and the solar cycle. J. Meteor. Soc. Japan, 75, 925-937.
    • --, and S. Yoden, 2006: Behavior of planetary waves before and after stratospheric sudden warming events in several phase of the equatorial QBO. J. Atmos. Sci., 63, 1637-1649.
    • Naujokat, B., 1986: An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 1873-1877.
    • Niwano, M., and M. Takahashi, 1998: The influence of the equatorial QBO on the Northern Hemisphere winter circulation of a GCM. J. Meteor. Soc. Japan, 76, 453-461.
    • O'Sullivan, D., 1997: Interaction of extratropical Rossby waves with westerly quasi-biennial oscillation winds. J. Geophys. Res., 102, 19 461-19 469.
    • --, and M. L. Salby, 1990: Coupling of the quasi-biennial oscillation and the extratropical circulation in the stratosphere through planetary wave transport. J. Atmos. Sci., 47, 650-673.
    • --, and R. E. Young, 1992: Modeling the quasi-biennial oscillation's effect on the winter stratospheric circulation. J. Atmos. Sci., 49, 2437-2448.
    • --, and T. J. Dunkerton, 1994: Seasonal development of the extratropical QBO in a numerical model of the middle atmosphere. J. Atmos. Sci., 51, 3706-3721.
    • Palmer, M. A., and L. J. Gray, 2005: Modeling the atmospheric response to solar irradiance changes using a GCM with a realistic QBO. Geophys. Res. Lett., 32, L24701, doi:10.1029/2005GL023809.
    • Pascoe, C. L., L. J. Gray, and A. A. Scaife, 2006: A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings. Geophys. Res. Lett., 33, L06825, doi:10.1029/ 2005GL024715.
    • Polvani, L. M., D. W. Waugh, and R. A. Plumb, 1995: On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci., 52, 1288-1309.
    • Randel, W., and F. Wu, 1996: Isolation of the ozone QBO in SAGE II data by singular-value decomposition. J. Atmos. Sci., 53, 2546-2559.
    • --, and Coauthors, 2004: The SPARC intercomparison of middleatmosphere climatologies. J. Climate, 17, 986-1003.
    • Salby, M., and P. Callaghan, 2000: Connection between the solar cycle and the QBO: The missing link. J. Climate, 13, 328-338.
    • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667-682.
    • --, N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 7055-7074.
    • Takahashi, M., 1996: Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys. Res. Lett., 23, 661-664.
    • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012.
    • von Storch, H., and F. R. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.
    • Wallace, J. M., R. L. Panetta, and J. Estberg, 1993: Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50, 1751-1762.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article