LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Molt, Robert; Watson, Thomas; Bazanté, Alexandre P.; Bartlett, Rodney J.; Richards, Nigel G.J. (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
Electronic and free energy barriers for a series of gas-phase RDX decomposition mechanisms have been obtain using coupled cluster singles, doubles, and perturbative triples with complete basis set (CCSD(T)/CBS) electronic energies for MBPT(2)/cc-pVTZ structures. Importantly, we have located a well-defined transition state for NN homolysis, in the initial RDX decomposition step, thereby obtaining a true barrier for this reaction. These calculations support the view that HONO elimination is preferred at STP over other proposed mechanisms, including NN homolysis, “triple whammy” and NONO isomerization. Indeed, our calculated values of Arrhenius parameters are in agreement with experimental findings for gas phase RDX decomposition. We also investigate a number of new pathways leading to breakdown of the intermediate formed by the initial HONO elimination, and find that NN homolysis in this intermediate has an activation energy barrier comparable with that computed for HONO elimination.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • T. B. Brill, P. E. Gongwer and G. K. Williams, J. Phys. Chem., 1994, 98, 12242-12247.
    • W. C. McCrone, Anal. Chem., 1950, 22, 954-955.
    • Phys. Chem. A, 2011, 115, 884-890.
    • B. M. Rice and C. F. Chabalowski, J. Phys. Chem. A, 1997, 101, 8720-8726.
    • Prod. Res. Dev., 1983, 22, 363-365.
    • R. J. Karpowicz and T. B. Brill, J. Phys. Chem., 1984, 88, 348-352.
    • 1 2 3 4 5 Chem. B, 2004, 108, 13100-13106. 35 N. Goto, H. Fujihisa, H. Yamawaki, K. Wakabayashi, Y.
    • Nakayama, M. Yoshida and M. Koshi, J. Phys. Chem. B, 36 2006, 110, 23655-9.
    • E. F. C. Byrd and B. M. Rice, J. Phys. Chem. C, 2007, 111, 37 2787-2796.
    • J. A. Ciezak, T. A. Jenkins, Z. Liu and R. J. Hemley, J. Phys. 38 Chem. A, 2007, 111, 59-63.
    • D. I. A. Millar, I. D. H. Oswald, C. Barry, D. J. Francis, W. G. 39 Marshall, C. R. Pulham and A. S. Cumming, Chem. Commun.
    • (Camb)., 2010, 46, 5662-4. 40 M. D. Pace, J. Phys. Chem., 1991, 95, 5858-5864.
    • P. Politzer, J. S. Murray, P. Lane, P. Sjoberg and H. G. 41 Adolph, Chem. Phys. Lett., 1991, 181, 78-82.
    • R. W. Molt, T. Watson, A. P. Bazanté and R. J. Bartlett, J. 42 Phys. Chem. A, 2013, 117, 3467-3474.
    • R. W. Molt, R. J. Bartlett, T. Watson and A. P. Bazanté, J. 43 Phys. Chem. A, 2012, 116, 12129-12135.
    • H. H. Cady, a. C. Larson and D. T. Cromer, Acta Crystallogr., 1963, 16, 617-623. 44 C. S. Choi and H. P. Boutin, Acta Crystallogr. Sect. B Struct.
    • Crystallogr. Cryst. Chem., 1970, 26, 1235-1240.
    • P. Main, R. E. Cobbledick and R. W. H. Small, Acta Crystallogr., 1985, C41, 1351-1354. 45 D. C. Sorescu, B. M. Rice and D. L. Thompson, J. Phys.
    • Chem. B, 1998, 102, 948-952. 46 M. F. Foltz, C. L. Coon, F. Garcia and A. L. Nichols, AD- C049 633L (93-0001), p 9, Apr 92, Contract W-7405-ENG-48, CPIA 47 Abstract No. 93-0003, AD D605 199, U-D; Chemical 48 Propulsion Information Agency: Columbia, MD., .
    • N. B. Bolotina, M. J. Hardie, R. L. Speer Jr and A. A. 49 Pinkerton, J. Appl. Crystallogr., 2004, 37, 808-814.
    • S. Okovytyy, Y. Kholod, M. Qasim, H. Fredrickson and J. 50 Leszczynski, J. Phys. Chem. A, 2005, 109, 2964-70.
    • R. Shaw and F. E. Walker, J. Phys. Chem., 1977, 81, 2572- 2576.
    • J. D. Cosgrove and A. J. Owen, Chem. Commun., 1968, 286. 51 A. J. B. Robertson, Trans. Faraday Soc., 1949, 45, 85.
    • F. C. Rauch and A. J. Fanelli, J. Phys. Chem., 1969, 73, 1604- 52 1608. 53 R. N. Rogers and G. W. Daub, Anal. Chem., 1973, 45, 596- 600. 54 H. Zuckermann, G. D. Greenblatt and Y. Haas, J. Phys.
    • Chem., 1987, 91, 5159-5161. 55 S. Bulusu, D. I. Weinstein, J. R. Autera and R. W. Velicky, J.
    • Phys. Chem., 1986, 90, 4121-4126. 56 X. Zhao, E. J. Hintsa and Y. T. Lee, J. Chem. Phys., 1988, 88, 801. 57 Y. Q. Guo, M. Greenfield, A. Bhattacharya and E. R.
    • Bernstein, J. Chem. Phys., 2007, 127, 154301. 58 T. R. Botcher and C. A. Wight, J. Phys. Chem., 1994, 98, 59 5441-5444. 60 S. A. Shackelford, M. B. Coolidge, B. B. Goshgarian, B. A.
    • Loving, R. N. Rogers, J. L. Janney and M. H. Ebinger, J. Phys. 61 Chem., 1985, 89, 3118-3126. 62 Y. Q. Guo, M. Greenfield and E. R. Bernstein, J. Chem. 63 Phys., 2005, 122, 244310.
    • H. S. Im and E. R. Bernstein, J. Chem. Phys., 2000, 113, 7911-7918.
    • C. J. Wu and L. E. Fried, J. Phys. Chem. A, 1997, 101, 8675- 8679.
    • N. J. Harris and K. Lammertsma, J. Am. Chem. Soc., 1997, 119, 6583-6589.
    • Goddard, J. Phys. Chem. A, 2000, 104, 2261-2272.
    • Phys. Chem. A, 2008, 112, 7383-90.
    • R. J. Bartlett and I. Shavitt, Cambridge University Press, Cambridge U.K., 2009.
    • J. D. Watts, J. Gauss and R. J. Bartlett, J. Chem. Phys., 1993, 98, 8718.
    • Klopper, J. Chem. Phys., 2000, 112, 9229.
    • V. F. Lotrich, N. Flocke, M. Ponton, A. D. Yau, A. S. Perera, E. Deumens and R. J. Bartlett, J. Chem. Phys., 2008, 128, 194104.
    • K. B. Lipkowitz, D. B. Boyd, R. J. Bartlett and J. F. Stanton, in Reviews in Computational Chemistry, Volume 5, eds. K. B.
    • Lipkowitz and D. B. Boyd, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1994, vol. 5, pp. 65-169.
    • Phys., 1985, 83, 4041.
    • R. J. Bartlett and M. Musial, Rev. Mod. Phys., 2007, 79, 291-352.
    • F. Coester and H. Kümmel, Nucl. Phys., 1960, 17, 477-485.
    • R. J. Bartlett and D. M. Silver, Phys. Rev. A, 1974, 10, 1927- 1931.
    • Phys., 1997, 106, 6430.
    • Montgomery, J. Comput. Chem., 1993, 14, 1347-1363.
    • J. A. Pople and W. J. Hehre, J. Comput. Phys., 1978, 27, 161-168.
    • B. H. Schlegel, J. Chem. Phys., 1982, 77, 3676.
    • K. Ishimura and S. Nagase, Theor. Chem. Acc., 2007, 120, 185-189.
    • L. E. McMurchie and E. R. Davidson, J. Comput. Phys., 1978, 26, 218-231.
    • H. F. King and M. Dupuis, J. Comput. Phys., 1976, 21, 144- 165.
    • M. Dupuis and H. F. King, Int. J. Quantum Chem., 1977, 11, 613-625.
    • J. Rys, M. Dupuis and H. F. King, J. Comput. Chem., 1983, 4, 154-157.
    • G. D. Fletcher, Int. J. Quantum Chem., 2006, 106, 355-360.
    • M. Dupuis and H. F. King, J. Chem. Phys., 1978, 68, 3998.
    • T. Takada, M. Dupuis and H. F. King, J. Chem. Phys., 1981, 75, 332.
    • C. C. J. Roothaan, Rev. Mod. Phys., 1951, 23, 69-89.
    • J. A. Pople and R. K. Nesbet, J. Chem. Phys., 1954, 22, 571.
    • J. A. Pople, S. J. Binkley and R. Seeger, Int. J. Quantum Chem., 2009, 10, 1-19.
    • Lett., 1990, 166, 275-280.
    • T. J. Lee and D. Jayatilaka, Chem. Phys. Lett., 1993, 201, 1- 10.
    • Accounts Theory, Comput. Model. (Theoretica Chim. Acta), 2002, 107, 57-70.
    • Gordon, J. Chem. Phys., 2006, 124, 14107.
    • J. Baker, J. Comput. Chem., 1986, 7, 385-395.
    • T. Helgaker, Chem. Phys. Lett., 1991, 182, 503-510.
    • Chim. Acta, 1992, 82, 189-205.
    • J. Almlof, K. Faegri and K. Korsell, J. Comput. Chem., 1982, 3, 385-399.
    • M. Hoser and R. Ahlrichs, J. Comput. Chem., 1989, 10, 104- 111.
    • P. Pulay, J. Comput. Chem., 1982, 3, 556-560.
    • Gordon, Comput. Phys. Commun., 2000, 128, 190-200.
    • Koseki, J. Comput. Chem., 2004, 25, 872-80.
    • T. H. Dunning Jr, J. Chem. Phys., 1989, 90, 1007.
    • T. Vladimiroff and B. M. Rice, J. Phys. Chem. A, 2002, 106, 10437-10443.
    • Chem. Acc., 2014, 133.
    • Chem., 1985, 89, 3118-3126.
    • R. N. Rogers and L. C. Smith, Thermochim. Acta, 1970, 1, 1- 9.
    • R. N. Rogers, Thermochim. Acta, 1974, 9, 444-446.
    • Y. Oyumi, Propellants, Explos. Pyrotech., 1988, 13, 42-47.
    • “olo'e, Russ. J. Phys. Chem., 1985, 59, 201-204.
    • Chem., 1994, 98, 7004-7008.
    • I. V. Schweigert, J. Phys. Chem. A, 2015, 119, 2747-2759.
    • Stolyarov, in 5th All-Union Symposium on Cumbustion and Explostion., 1977, pp. 47-50.
    • G. K. Klimenko, in Combustion and Explostion: Materials of the 4th All-Union Symposium on Cumbustion and Explostion., Nauka, Moscow, Russia, 1977, pp. 585-593.
    • Y. M. Burov and G. M. Nazin, Kinet. Catal., 1982, 23, 5-10.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | MRI: Acquisition of a High-...

Cite this article