Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Morny, Emyan Komla; Margrain, Thomas Hengist; Binns, Alison; Votruba, Marcela (2015)
Publisher: Association for Research in Vision and Ophthalmology
Languages: English
Types: Article
Purpose\ud To assess the effect of ADOA on the ON and OFF components of the photopic negative response (PhNR).\ud \ud Methods\ud Twelve participants from 6 families with OPA1 ADOA and 16 age matched controls were recruited. Electrophysiological assessment involved long flash focal (20o) and full field ERGs using red flash (664 nm, 250 msec, 55 cd/m2, 2 Hz) on a rod saturating blue background (454 nm, 100 scot cd/m2); and brief xenon flash ERGs using red filter (Lee Filter “Terry Red”, max 300 µs flash duration, 1.69 cd.s.m-2, 4 Hz) over a continuous rod saturating blue background (Schott Glass Filter BG28, 206 scot cd/m2). Amplitudes (from peak and baseline to fixed time point) and implicit times of the ERG components were analysed.\ud \ud Results\ud Mean amplitude (peak to fixed time) of the focal PhNR-ON were significantly (p < 0.05) reduced by 40% while the focal PhNR-OFF was completely eliminated. In the long duration full field ERG, the PhNR-ON and –OFF were reduced by 21% and 57% respectively. Subtraction of the grand averaged ERG of ADOA participants from that of the controls produced a difference plot with a nearly symmetrical loss in the PhNR-ON and OFF components of the focal ERG. ROC curve analysis showed focal PhNR-ON and OFF amplitudes performed better than their full field counterparts.\ud \ud Conclusions\ud We show that OFF components of the photopic ERG were more severely affected in ADOA than ON components. Additionally, the focal PhNR-ON and –OFF components were more effective in assessing ADOA than their full field components.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Marmor MF, Brigell MG, McCulloch DL, Westall CA, Bach M. ISCEV standard for clinical electro-oculography (2010 update). Documenta Ophthalmologica 2011;122:1-7.
    • 2. Votruba M, Fitzke FW, Holder GE, Carter A, Bhattacharya SS, Moore AT. Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch Ophthalmol 1998;116:351-358.
    • 3. Votruba M, Thiselton D, Bhattacharya SS. Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol 2003;87:48-53.
    • 4. Newman NJ, Biousse V. Hereditary optic neuropathies. Eye 2004;18:1144- 1160.
    • 5. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet 2009;46:145-158.
    • 6. Votruba M, Moore AT, Bhattacharya SS. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J Med Genet 1998;35:793-800.
    • 7. Krill AE, Smith VC, Pokorny J. Similarities between congenital tritan defects and dominant optic-nerve atrophy - coincidence or identity J Opt Soc Am 1970;60:1132-&.
    • 8. Kjer B, Eiberg H, Kjer P, Rosenberg T. Dominant optic atrophy mapped to chromosome 3q region .2. Clinical and epidemiological aspects. Acta Ophthalmol Scand 1996;74:3-7.
    • 9. Votruba M, Aijaz S, Moore AT. A review of primary hereditary optic neuropathies. J Inherit Metab Dis 2003;26:209-227.
    • 10. Yu-Wai-Man P, Griffiths PG, Burke A, et al. The prevalence and natural history of dominant optic atrophy due to OPA1 mutations. Ophthalmology 2010;117:1538-1546, 1546.e1531.
    • 11. Gallus GN, Cardaioli E, Rufa A, et al. High frequency of OPA1 mutations causing high ADOA prevalence in south-eastern Sicily, Italy. Clin Genet 2012;82:277-282.
    • 12. Lenaers G, Hamel C, Delettre C, et al. Dominant optic atrophy. Orphanet J Rare Dis 2012;7.
    • 13. Alexander C, Votruba M, Pesch UEA, et al. OPA1, encoding a dynaminrelated GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000;26:211-215.
    • 14. Delettre C, Lenaers G, Griffoin JM, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000;26:207-210.
    • 15. Ferre M, Bonneau D, Milea D, et al. Molecular Screening of 980 Cases of Suspected Hereditary Optic Neuropathy with a Report on 77 Novel OPA1 Mutations. Hum Mutat 2009;30:E692-E705.
    • 16. Ferre M, Amati-Bonneau P, Tourmen Y, Malthiery Y, Reynier P. eOPA1: An online database for OPA1 mutations. Hum Mutat 2005;25:423-428.
    • 17. Johnston PB, Gaster RN, Smith VC, Tripathi RC. A clinicopathologic study of autosomal dominant optic atrophy. Am J Ophthalmol 1979;88:868-875.
    • 18. Kjer P, Jensen OA, Klinken L. Histopathology of eye, optic-nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol (Copenh) 1983;61:300-312.
    • 19. Williams PA, Morgan JE, Votruba M. Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy. Brain 2010;133:2942-2951.
    • 20. Sarzi E, Angebault C, Seveno M, et al. The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain 2012;135:3599-3613.
    • 21. Alavi MV, Bette S, Schimpf S, et al. A splice site mutation in the murine OpaI gene features pathology of autosomal dominant optic atrophy. Brain 2007;130:1029- 1042.
    • 22. Davies VJ, Hollins AJ, Piechota MJ, et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 2007;16:1307-1318.
    • 23. Williams PA, Piechota M, von Ruhland C, Taylor E, Morgan JE, Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain 2012;135:493-505.
    • 24. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL, 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 1999;40:1124-1136.
    • 25. Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 2000;41:2797-2810.
    • 26. Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 2001;42:514-522.
    • 27. Rangaswamy NV, Shirato S, Kaneko M, Digby BI, Robson JG, Frishman LJ. Effects of Spectral Characteristics of Ganzfeld Stimuli on the Photopic Negative Response (PhNR) of the ERG. Invest Ophthalmol Vis Sci. United States; 2007:4818- 4828.
    • 28. Sustar M, Hawlina M, Brecelj J. ON- and OFF-response of the photopic electroretinogram in relation to stimulus characteristics. Doc Ophthalmol 2006;113:43-52.
    • 29. Miyata K, Nakamura M, Kondo M, et al. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci 2007;48:820-824.
    • 30. Barnard AR, Issa PC, Perganta G, et al. Specific deficits in visual electrophysiology in a mouse model of dominant optic atrophy. Exp Eye Res 2011;93:771-777.
    • 31. Machida S, Tamada K, Oikawa T, et al. Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. Journal of ophthalmology 2011;2011.
    • 32. Tamada K, Machida S, Yokoyama D, Kurosaka D. Photopic negative response of full-field and focal macular electroretinograms in patients with optic nerve atrophy. Jpn J Ophthalmol 2009;53:608-614.
    • 33. Holder GE, Votruba M, Carter AC, Bhattacharya SS, Fitzke FW, Moore AT. Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 1998;95:217-228.
    • 34. Luo X, Frishman LJ. Retinal Pathway Origins of the Pattern Electroretinogram (PERG). Invest Ophthalmol Vis Sci 2011;52:8571-8584.
    • 35. Aguilar M, Stiles WS. Saturation of the rod mechanism of the retina at high levels of stimulation. Opt Acta (Lond) 1954;1:59-65.
    • 36. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983;148:839-843.
    • 37. Evers HU, Gouras P. Three cone mechanisms in the primate electroretinogram: two with, one without off-center bipolar responses. Vision Res 1986;26:245-254.
    • 38. Nakamura H, Miyamoto K, Yokota S, Ogino K, Yoshimura N. Focal macular photopic negative response in patients with optic neuritis. Eye (Lond) 2011:358-364.
    • 39. Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol 2004:341-346.
    • 40. Granse L, Bergstrand I, Thiselton D, et al. Electrophysiology and ocular blood flow in a family with dominant optic nerve atrophy and a mutation in the OPA1 gene. Ophthalmic Genet 2003;24:233-245.
    • 41. Yu-Wai-Man P, Griffiths PG, Gorman GS, et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010;133:771-786.
    • 42. Kondo M, Kurimoto Y, Sakai T, et al. Recording focal macular photopic negative response (PhNR) from monkeys. Invest Ophthalmol Vis Sci 2008:3544- 3550.
    • 43. Curcio CA, Allen KA. Topography of ganglion-cells in human retina. J Comp Neurol 1990;300:5-25.
    • 44. Fuhrmann N, Schimpf S, Kamenisch Y, et al. Solving a 50 year mystery of a missing OPA1 mutation: more insights from the first family diagnosed with autosomal dominant optic atrophy. Mol Neurodegener 2010;5.
    • 45. Dacey DM, Petersen MR. Dendritic field size and morphology of midget and parasol ganglion-cells of the human retina. Proc Natl Acad Sci U S A 1992;89:9666- 9670.
    • 46. Dacey DM. The mosaic of midget ganglion cells in the human retina. J Neurosci 1993;13:5334-5355.
    • 47. Drasdo N, Millican CL, Katholi CR, Curcio CA. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res 2007;47:2901-2911.
    • 48. Bush RA, Sieving PA. A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 1994;35:635-645.
    • 49. Ueno S, Kondo M, Ueno M, Miyata K, Terasaki H, Miyake Y. Contribution of retinal neurons to d-wave of primate photopic electroretinograms. Vision Res 2006;46:658-664.
    • 50. Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 1994;11:519-532.
    • 51. Horn FK, Gottschalk K, Mardin CY, Pangeni G, Junemann AG, Kremers J. On and off responses of the photopic fullfield ERG in normal subjects and glaucoma patients. Doc Ophthalmol 2011;122:53-62.
    • 52. Mortlock KE, Binns AM, Aldebasi YH, North RV. Inter-subject, inter-ocular and inter-session repeatability of the photopic negative response of the electroretinogram recorded using DTL and skin electrodes. Doc Ophthalmol 2010;121:123-134.
    • 53. Reis A, Mateus C, Viegas T, et al. Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level. Graefes Arch Clin Exp Ophthalmol 2013;251:221-234.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article