Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Haynes, M. (Martin); Arber, T. D. (2007)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: QB
Aims. Previous work on the dynamics of the kink instability has concentrated on the evolution of the magnetic field and associated current sheets. Here we aim to determine the observational consequences of the kink instability in short coronal loops, particularly what images TRACE would record of such an instability. This paper concentrates on the internal m = 1 mode where the kink structure\ud of the instability may not be apparent from the global field shape. This is most relevant to the observation of active region brightenings and coronal bright points.\ud Methods. An existing fluid code was modified to include the TRACE temperature response function in order to calculate temporally and spatially averaged, line of sight images in the 171, 195 and 284 Å band passes for straight, kink unstable flux tubes.\ud Results. Two new fluid effects of the kink instability are discovered: the circular enhancement of the density at the foot points and the appearance of a low density band running across the flux tube. The second of these effects is shown to be imagable by TRACE and hence would be a good candidate observational signature for an internal m = 1 kink unstable loop.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amari, T., & Luciani, J. F. 1999, ApJ, 515, L81
    • Amari, T., Luciani, J. F., Aly, J. J., & Tagger, M. 1996, ApJ, 466, L39 Arber, T. D., Longbottom, A. W., & Van der Linden, R. A. M. 1999, ApJ, 517, 990
    • Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. 2001, J. Comput. Phys., 171, 151
    • Aulanier, G., Démoulin, P., & Grappin, R. 2005, A&A, 430, 1067 Baty, H. 2000, A&A, 360, 345
    • Baty, H., & Heyvaerts, J. 1996, A&A, 308, 935
    • Berghmans, D., McKenzie, D., & Clette, F. 2001, A&A, 369, 291 Birn, J., Forbes, T. G., & Hesse, M. 2006, ApJ, 645, 732
    • Brown, D. S., Parnell, C. E., Deluca, E. E., Golub, L., & McMullen, R. A. 2001, Sol. Phys., 201, 305
    • Einaudi, G., & van Hoven, G. 1983, Sol. Phys., 88, 163
    • Fan, Y. 2005, ApJ, 630, 543
    • Gerrard, C. L., & Hood, A. W. 2003, Sol. Phys., 214, 151
    • Gerrard, C. L., Arber, T. D., Hood, A. W., & Van der Linden, R. A. M. 2001, A&A, 373, 1089
    • Gerrard, C. L., Hood, A. W., & Brown, D. S. 2004, Sol. Phys., 222, 79 Handy, B. N., Acton, L. W., Kankelborg, C. C., et al. 1999, Sol. Phys., 187, 229 Hood, A. W., & Priest, E. R. 1981, Geophys. Astrophys. Fluid Dyn., 17, 297 Klimchuk, J. A., Antiochos, S. K., & Norton, D. 2000, ApJ, 542, 504 Lionello, R., Velli, M., Einaudi, G., & Mikic´, Z. 1998, ApJ, 494, 840 Mikic´, Z., Schnack, D. D., & Van Hoven, G. 1990, ApJ, 361, 690 Mok, Y., Mikic´, Z., Lionello, R., & Linker, J. A. 2005, ApJ, 621, 1098 Seaton, D. B., Winebarger, A. R., DeLuca, E. E., et al. 2001, ApJ, 563, L173 Shimizu, T., Tsuneta, S., Acton, L. W., et al. 1994, ApJ, 422, 906 Tokman, M., & Bellan, P. M. 2002, ApJ, 567, 1202
    • Török, T., & Kliem, B. 2003, A&A, 406, 1043
    • Török, T., & Kliem, B. 2005, ApJ, 630, L97
    • Török, T., Kliem, B., & Titov, V. S. 2004, A&A, 413, L27
    • Van Hoven, G., Mok, Y., & Mikic´, Z. 1995, ApJ, 440, L105
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article