Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; Wark, Justin S.; Higginbotham, Andrew (2015)
Languages: English
Types: Article
Subjects: 3100
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases we compare our method with results obtained by taking the Fourier Transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced $\alpha$-$\epsilon$ phase transition in iron, the $\alpha$-$\omega$ transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 5 1 0 2 6 2 ∗ Electronic address: .
    • † Now at Department of Physics, University of York, Heslington, York YO10 5DD, UK
    • 1 M. H. Rice, R. G. McQueen, and J. M. Walsh, “Compression of solids by strong shock waves,” Solid state Phys., vol. 6, pp. 1-63, 1958.
    • 2 G. E. Duvall and G. R. Fowles, “Shock waves,” in High Press. Phys. Chem. Vol. 2, vol. 2, p. 209, 1963.
    • 3 L. Davison and R. Graham, “Shock compression of solids,” Phys. Rep., vol. 55, pp. 255-379, Oct. 1979.
    • 4 J. W. Swegle and D. E. Grady, “Shock viscosity and the prediction of shock wave rise times,” J. Appl. Phys., vol. 58, no. 2, p. 692, 1985.
    • 5 D. H. Kalantar, J. Belak, G. W. Collins, J. Colvin, H. Davies, J. H. Eggert, T. Germann, J. Hawreliak, B. Holian, K. Kadau, P. Lomdahl, H. E. Lorenzana, M. A. Meyers, K. Rosolankova, M. Schneider, J. Sheppard, J. St¨olken, and J. S. Wark, “Direct Observation of the α-ǫ Transition in Shock-Compressed Iron via Nanosecond X-Ray Diffraction,” Phys. Rev. Lett., vol. 95, pp. 1-4, Aug. 2005.
    • 6 S. Minshall, “Properties of Elastic and Plastic Waves Determined by Pin Contactors and Crystals,” J. Appl. Phys., vol. 26, no. 4, p. 463, 1955.
    • 7 D. Bancroft, E. L. Peterson, and S. Minshall, “Polymorphism of Iron at High Pressure,” J. Appl. Phys., vol. 27, p. 291, Mar. 1956.
    • 8 G. R. Fowles, “Shock Wave Compression of Hardened and Annealed 2024 Aluminum,” J. Appl. Phys., vol. 32, no. 8, p. 1475, 1961.
    • 9 D. B. Hayes, “Polymorphic phase transformation rates in shock-loaded potassium chloride,” J. Appl. Phys., vol. 45, no. 3, p. 1208, 1974.
    • 10 Q. Johnson, A. Mitchell, R. Keeler, and L. Evans, “X-Ray Diffraction During Shock-Wave Compression,” Phys. Rev. Lett., vol. 25, pp. 1099-1101, Oct. 1970.
    • 11 Q. Johnson, A. Mitchell, and L. Evans, “X-ray Diffraction Evidence for Crystalline Order and Isotropic Compression during the Shock-wave Process,” Nature, vol. 231, pp. 310-311, June 1971.
    • 12 Q. Johnson and A. Mitchell, “First X-Ray Diffraction Evidence for a Phase Transition during Shock-Wave Compression,” Phys. Rev. Lett., vol. 29, pp. 1369-1371, Nov. 1972.
    • 13 Q. Johnson, “X-ray diffraction study of single crystals undergoing shock-wave compression,” Appl. Phys. Lett., vol. 21, no. 1, p. 29, 1972.
    • 14 R. Germer, “X-ray flash techniques,” J. Phys. E., vol. 12, pp. 336-350, May 1979.
    • 15 D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. B At. Mol. Opt. Phys., vol. 38, pp. S773-S797, May 2005.
    • 16 J. S. Wark, R. Whitlock, A. Hauer, J. Swain, and P. Solone, “Shock launching in silicon studied with use of pulsed x-ray diffraction,” Phys. Rev. B, vol. 35, pp. 9391-9394, June 1987.
    • 17 J. S. Wark, R. Whitlock, A. Hauer, J. Swain, and P. Solone, “Subnanosecond x-ray diffraction from laser-shocked crystals,” Phys. Rev. B, vol. 40, pp. 5705-5714, Sept. 1989.
    • 18 D. Milathianaki, S. Boutet, G. J. Williams, A. Higginbotham, D. Ratner, A. E. Gleason, M. Messerschmidt, M. M. Seibert, D. C. Swift, P. Hering, J. Robinson, W. E. White, and J. S. Wark, “Femtosecond visualization of lattice dynamics in shock-compressed matter.,” Science, vol. 342, pp. 220-3, Oct. 2013.
    • 19 R. R. Whitlock and J. S. Wark, “Orthogonal strains and onset of plasticity in shocked LiF crystals,” Phys. Rev. B, vol. 52, pp. 8-11, July 1995.
    • 20 Y. M. Gupta, K. A. Zimmerman, P. A. Rigg, E. B. Zaretsky, D. M. Savage, and P. M. Bellamy, “Experimental developments to obtain real-time x-ray diffraction measurements in plate impact experiments,” Rev. Sci. Instrum., vol. 70, no. 10, p. 4008, 1999.
    • 21 P. A. Rigg and Y. M. Gupta, “Real-time x-ray diffraction to examine elastic-plastic deformation in shocked lithium fluoride crystals,” Appl. Phys. Lett., vol. 73, no. 12, pp. 1655-1657, 1998.
    • 22 T. D'Almeida and Y. M. Gupta, “Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100],” Phys. Rev. Lett., vol. 85, pp. 330-333, 2000.
    • 23 A. Loveridge-Smith, A. Allen, J. Belak, T. Boehly, A. Hauer, B. Holian, D. H. Kalantar, G. Kyrala, R. Lee, P. Lomdahl, M. A. Meyers, D. Paisley, S. Pollaine, B. A. Remington, D. Swift, S. Weber, and J. S. Wark, “Anomalous Elastic Response of Silicon to Uniaxial Shock Compression on Nanosecond Time Scales,” Phys. Rev. Lett., vol. 86, pp. 2349-2352, Mar. 2001.
    • 24 D. H. Kalantar, J. Belak, E. M. Bringa, K. Budil, M. Caturla, J. Colvin, M. Kumar, K. T. Lorenz, R. E. Rudd, J. Stolken, A. M. Allen, K. Rosolankova, J. S. Wark, M. A. Meyers, and M. Schneider, “High-pressure, high-strain-rate lattice response of shocked materials,” Phys. Plasmas, vol. 10, no. 5, p. 1569, 2003.
    • 25 J. Hawreliak, J. Colvin, J. H. Eggert, D. H. Kalantar, H. E. Lorenzana, J. S. St¨olken, H. Davies, T. Germann, B. Holian, K. Kadau, P. Lomdahl, A. Higginbotham, K. Rosolankova, J. Sheppard, and J. S. Wark, “Analysis of the x-ray diffraction signal for the α- transition in shock-compressed iron: Simulation and experiment,” Phys. Rev. B, vol. 74, pp. 1-16, Nov. 2006.
    • 26 W. J. Murphy, A. Higginbotham, G. Kimminau, B. Barbrel, E. M. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W. McBarron, M. A. Meyers, B. Nagler, N. Ozaki, N. Park, B. A. Remington, S. Rothman, S. M. Vinko, T. Whitcher, and J. S. Wark, “The strength of single crystal copper under uniaxial shock compression at 100 GPa.,” J. Phys. Condens. Matter, vol. 22, p. 065404, Feb. 2010.
    • 27 J. Hawreliak, B. El-Dasher, H. E. Lorenzana, G. Kimminau, A. Higginbotham, B. Nagler, S. M. Vinko, W. Murphy, T. Whitcher, J. S. Wark, S. Rothman, and N. Park, “In situ x-ray diffraction measurements of the c/a ratio in the highpressure ǫ phase of shock-compressed polycrystalline iron,” Phys. Rev. B, vol. 83, pp. 1-6, Apr. 2011.
    • 28 J. R. Rygg, J. H. Eggert, A. E. Lazicki, F. Coppari, J. A. Hawreliak, D. G. Hicks, R. F. Smith, C. M. Sorce, T. M. Uphaus, B. Yaakobi, and G. W. Collins, “Powder diffraction from solids in the terapascal regime,” Rev. Sci. Instrum., vol. 83, pp. 113904-113907, Nov. 2012.
    • 29 A. J. Comley, B. R. Maddox, R. E. Rudd, S. T. Prisbrey, J. A. Hawreliak, D. A. Orlikowski, S. C. Peterson, J. H. Satcher, A. J. Elsholz, H.-S. Park, B. A. Remington, N. Bazin, J. M. Foster, P. Graham, N. Park, P. A. Rosen, S. R. Rothman, A. Higginbotham, M. J. Suggit, and J. S. Wark, “Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined using In Situ Broadband X-Ray Laue Diffraction,” Phys. Rev. Lett., vol. 110, p. 115501, Mar. 2013.
    • 30 D. H. Kalantar, E. M. Bringa, M. Caturla, J. Colvin, K. T. Lorenz, M. Kumar, J. Stolken, A. M. Allen, K. Rosolankova, J. S. Wark, M. A. Meyers, M. Schneider, and T. R. Boehly, “Multiple film plane diagnostic for shocked lattice measurements (invited),” Rev. Sci. Instrum., vol. 74, no. 3, p. 1929, 2003.
    • 31 M. J. Suggit, G. Kimminau, J. Hawreliak, B. A. Remington, N. Park, and J. S. Wark, “Nanosecond x-ray Laue diffraction apparatus suitable for laser shock compression experiments.,” Rev. Sci. Instrum., vol. 81, p. 083902, Aug. 2010.
    • 32 A. Higginbotham, S. Patel, J. A. Hawreliak, O. Ciricosta, G. W. Collins, F. Coppari, J. H. Eggert, M. J. Suggit, H. Tang, and J. S. Wark, “Single photon energy dispersive x-ray diffraction.,” Rev. Sci. Instrum., vol. 85, p. 033906, Mar. 2014.
    • 33 H.-R. Wenk and P. V. Houtte, “Texture and anisotropy,” Reports Prog. Phys., vol. 67, pp. 1367-1428, Aug. 2004.
    • 34 H. R. Wenk, F. Heidelbach, D. Chateigner, and F. Zontone, “Laue orientation imaging.,” J. Synchrotron Radiat., vol. 4, pp. 95-101, Mar. 1997.
    • 35 H.-R. Wenk and S. Grigull, “Synchrotron texture analysis with area detectors,” J. Appl. Crystallogr., vol. 36, pp. 1040-1049, July 2003.
    • 36 H.-R. Wenk, G. Ischia, N. Nishiyama, Y. Wang, and T. Uchida, “Texture development and deformation mechanisms in ringwoodite,” Phys. Earth Planet. Inter., vol. 152, pp. 191-199, Sept. 2005.
    • 37 G. Ischia, H.-R. Wenk, L. Lutterotti, and F. Berberich, “Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images,” J. Appl. Crystallogr., vol. 38, pp. 377-380, Mar. 2005.
    • 38 N. R. Barton and J. V. Bernier, “A method for intragranular orientation and lattice strain distribution determination,” J. Appl. Crystallogr., vol. 45, pp. 1145-1155, Nov. 2012.
    • 39 S. C. Vogel, H. Reiche, and D. W. Brown, “High pressure deformation study of zirconium,” Powder Diffr., vol. 22, pp. 113- 117, Mar. 2012.
    • 40 D. Brown, S. Agnew, M. Bourke, T. Holden, S. Vogel, and C. Tom´e, “Internal strain and texture evolution during deformation twinning in magnesium,” Mater. Sci. Eng. A, vol. 399, pp. 1-12, June 2005.
    • 41 A. Higginbotham and D. McGonegle, “Prediction of Debye-Scherrer diffraction patterns in arbitrarily strained samples,” J. Appl. Phys., vol. 115, p. 174906, May 2014.
    • 42 M. Polanyi, “The X-ray fiber diagram,” Z. Phys, vol. 7, pp. 149-180, 1921.
    • 43 M. Polanyi, “The X-ray fiber diagram,” Z. Phys, vol. 9, pp. 123-130, 1923.
    • 44 N. Stribeck, “On the determination of fiber tilt angles in fiber diffraction.,” Acta Crystallogr. A., vol. 65, pp. 46-7, Jan. 2009.
    • 45 V. Dupont and T. C. Germann, “Strain rate and orientation dependencies of the strength of single crystalline copper under compression,” Phys. Rev. B, vol. 86, p. 134111, Oct. 2012.
    • 46 R. F. Smith, R. W. Minich, R. E. Rudd, J. H. Eggert, C. A. Bolme, S. L. Brygoo, A. M. Jones, and G. W. Collins, “Orientation and rate dependence in high strain-rate compression of single-crystal silicon,” Phys. Rev. B, vol. 86, p. 245204, Dec. 2012.
    • 47 H. Zong, T. Lookman, X. Ding, S.-N. Luo, and J. Sun, “Anisotropic shock response of titanium: Reorientation and transformation mechanisms,” Acta Mater., vol. 65, pp. 10-18, Feb. 2014.
    • 48 E. M. Bringa, A. Caro, Y. Wang, M. Victoria, J. M. McNaney, B. A. Remington, R. F. Smith, B. R. Torralva, and H. Van Swygenhoven, “Ultrahigh strength in nanocrystalline materials under shock loading.,” Science, vol. 309, pp. 1838-41, Sept. 2005.
    • 49 K. Kadau, T. Germann, P. Lomdahl, R. Albers, J. S. Wark, A. Higginbotham, and B. Holian, “Shock Waves in Polycrystalline Iron,” Phys. Rev. Lett., vol. 98, pp. 1-4, Mar. 2007.
    • 50 H. N. Jarmakani, E. M. Bringa, P. Erhart, B. A. Remington, Y. M. Wang, N. Q. Vo, and M. A. Meyers, “Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals,” Acta Mater., vol. 56, pp. 5584-5604, Nov. 2008.
    • 51 E. M. Bringa, S. Traiviratana, and M. A. Meyers, “Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects,” Acta Mater., vol. 58, pp. 4458-4477, Aug. 2010.
    • 52 N. Gunkelmann, E. M. Bringa, D. R. Tramontina, C. J. Ruestes, M. J. Suggit, A. Higginbotham, J. S. Wark, and H. M. Urbassek, “Shock waves in polycrystalline iron: Plasticity and phase transitions,” Phys. Rev. B, vol. 89, p. 140102, Apr. 2014.
    • 53 G. Kimminau, B. Nagler, A. Higginbotham, W. J. Murphy, N. Park, J. Hawreliak, K. Kadau, T. C. Germann, E. M. Bringa, D. H. Kalantar, H. E. Lorenzana, B. A. Remington, and J. S. Wark, “Simulating picosecond x-ray diffraction from shocked crystals using post-processing molecular dynamics calculations,” J. Phys. Condens. Matter, vol. 20, p. 505203, Dec. 2008.
    • 54 K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, “Microscopic view of structural phase transitions induced by shock waves.,” Science, vol. 296, pp. 1681-4, May 2002.
    • 55 M. P. Usikov and V. A. Zilbershtein, “The orientation relationship between the α- and ω-phases of titanium and zirconium,” Phys. Status Solidi, vol. 19, pp. 53-58, Sept. 1973.
    • 56 D. Trinkle, R. Hennig, S. Srinivasan, D. Hatch, M. Jones, H. Stokes, R. Albers, and J. Wilkins, “New Mechanism for the α to ω Martensitic Transformation in Pure Titanium,” Phys. Rev. Lett., vol. 91, p. 025701, July 2003.
    • 57 S. G. Song and G. T. Gray, “Microscopic and crystallographic aspects of retained omega phase in shock-loaded zirconium and its formation mechanism,” Philos. Mag. A, vol. 71, pp. 275-290, Feb. 1995.
    • 58 J. Silcock, “An X-ray examination of the to phase in TiV, TiMo and TiCr alloys,” Acta Metall., vol. 6, pp. 481-493, July 1958.
    • 59 G. Jyoti, K. D. Joshi, S. C. Gupta, and S. K. Sikka, “Crystalography of the alpha-omega transition in shock-loaded zirconium,” Philos. Mag. Lett., vol. 75, pp. 291-300, May 1997.
    • 60 L. Murr, M. Meyers, C.-S. Niou, Y. Chen, S. Pappu, and C. Kennedy, “Shock-induced deformation twinning in tantalum,” Acta Mater., vol. 45, pp. 157-175, Jan. 1997.
    • 61 L. Hsiung and D. Lassila, “Shock-induced deformation twinning and omega transformation in tantalum and tantalumtungsten alloys,” Acta Mater., vol. 48, pp. 4851-4865, Dec. 2000.
    • 62 J. N. Florando, N. R. Barton, B. S. El-Dasher, J. M. McNaney, and M. Kumar, “Analysis of deformation twinning in tantalum single crystals under shock loading conditions,” J. Appl. Phys., vol. 113, no. 8, p. 083522, 2013.
    • 63 B. Pang, I. Jones, Y. Chiu, J. Millett, G. Whiteman, and N. Bourne, “Orientation dependence of shock induced dislocations in tantalum single crystals,” J. Phys. Conf. Ser., vol. 522, p. 012029, June 2014.
    • 64 C. Lu, B. Remington, B. Maddox, B. Kad, H. Park, S. Prisbrey, and M. Meyers, “Laser compression of monocrystalline tantalum,” Acta Mater., vol. 60, pp. 6601-6620, Nov. 2012.
    • 65 C. Lu, B. Remington, B. Maddox, B. Kad, H. Park, M. Kawasaki, T. Langdon, and M. Meyers, “Laser compression of nanocrystalline tantalum,” Acta Mater., vol. 61, pp. 7767-7780, Dec. 2013.
    • 66 A. Higginbotham, M. J. Suggit, E. M. Bringa, P. Erhart, J. A. Hawreliak, G. Mogni, N. Park, B. A. Remington, and J. S. Wark, “Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal,” Phys. Rev. B, vol. 88, p. 104105, Sept. 2013.
    • 67 X. D. Dai, Y. Kong, J. H. Li, and B. X. Liu, “Extended FinnisSinclair potential for bcc and fcc metals and alloys,” J. Phys. Condens. Matter, vol. 18, pp. 4527-4542, May 2006.
    • 68 M. J. Suggit, A. Higginbotham, J. a. Hawreliak, G. Mogni, G. Kimminau, P. Dunne, A. J. Comley, N. Park, B. A. Remington, and J. S. Wark, “Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper.,” Nat. Commun., vol. 3, p. 1224, Jan. 2012.
    • 69 R. Ravelo, T. C. Germann, O. Guerrero, Q. An, and B. L. Holian, “Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations,” Phys. Rev. B, vol. 88, p. 134101, Oct. 2013.
    • 70 E. M. Bringa, K. Rosolankova, R. E. Rudd, B. A. Remington, J. S. Wark, M. Duchaineau, D. H. Kalantar, J. Hawreliak, and J. Belak, “Shock deformation of face-centred-cubic metals on subnanosecond timescales.,” Nat. Mater., vol. 5, pp. 805-9, Oct. 2006.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article