LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Robinson, Jasper; Whitt, Emma J.; Jones, Peter M. (2017)
Publisher: American Psychological Association
Journal: Journal of Experimental Psychology. Animal Learning and Cognition
Languages: English
Types: Article
Subjects: familiarity, novelty, Articles, recognition memory
We report that stimulus novelty/familiarity is able to modulate stimulus generalization and discuss the theoretical implications of novelty/familiarity coding. Rats in Skinner boxes received clicker → shock pairings before generalization testing to a tone. Before clicker training, different groups of rats received preexposure treatments designed to systematically modulate the clicker and the tone's novelty and familiarity. Rats whose preexposure matched novelty/familiarity (i.e., either both or neither clicker and tone were pre-exposed) showed enhanced suppression to the tone relative to rats whose preexposure mixed novelty/familiarity (i.e., only clicker or tone was pre-exposed). This was not the result of sensory preconditioning to clicker and tone.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aggleton, J. P., & Brown, M. W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences, 10, 455- 463. http://dx.doi.org/10.1016/j.tics.2006.08.003
    • Albasser, M. M., Davies, M., Futter, J. E., & Aggleton, J. P. (2009). Magnitude of the object recognition deficit associated with perirhinal cortex damage in rats: Effects of varying the lesion extent and the duration of the sample period. Behavioral Neuroscience, 123, 115-124. http://dx.doi.org/10.1037/a0013829
    • Baxter, M. G., & Murray, E. A. (2001). Impairments in visual discrimination learning and recognition memory produced by neurotoxic lesions of rhinal cortex in rhesus monkeys. The European Journal of Neuroscience, 13, 1228 -1238. http://dx.doi.org/10.1046/j.0953-816x.2001 .01491.x
    • Bennett, C. H., Wills, S. J., Wells, J. O., & Mackintosh, N. J. (1994). Reduced generalization following preexposure: Latent inhibition of common elements or a difference in familiarity? Journal of Experimental Psychology: Animal Behavior Processes, 20, 232-239. http://dx.doi .org/10.1037//0097-7403.20.3.232
    • Best, M. R., & Batson, J. D. (1977). Enhancing the expression of flavor neophobia: Some effects of the ingestion-illness contingency. Journal of Experimental Psychology: Animal Behavior Processes, 3, 132-143. http://dx.doi.org/10.1037/0097-7403.3.2.132
    • Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. The Journal of Neuroscience, 20, 4320 - 4324.
    • Brandon, S. E., Vogel, E. H., & Wagner, A. R. (2003). Stimulus representation in SOP: I. Theoretical rationalization and some implications. Behavioural Processes, 62, 5-25. http://dx.doi.org/10.1016/S0376- 6357(03)00016-0
    • Dwyer, D. M., Mackintosh, N. J., & Boakes, R. A. (1998). Simultaneous activation of the representations of absent cues results in the formation of an excitatory association between them. Journal of Experimental Psychology: Animal Behavior Processes, 24, 163-171. http://dx.doi.org/ 10.1037/0097-7403.24.2.163
    • Fanselow, M. S. (1990). Factors Governing One-Trial Contextual Conditioning. Animal Learning & Behavior, 18, 264 -270. http://dx.doi.org/ 10.3758/BF03205285
    • Gaffan, D. (1974). Recognition impaired and association intact in the memory of monkeys after transection of the fornix. Journal of Comparative and Physiological Psychology, 86, 1100 -1109. http://dx.doi.org/ 10.1037/h0037649
    • Guttman, N., & Kalish, H. I. (1956). Discriminability and stimulus generalization. Journal of Experimental Psychology, 51, 79 - 88. http://dx.doi .org/10.1037/h0046219
    • Hall, G. (2001). Perceptual learning: Association and differentiation. In R. R. Mower & S. B. Klein (Eds.), Handbook of contemporary learning theories (pp. 367- 408). Mahwah, NJ: Erlbaum.
    • Hanson, H. M. (1959). Effects of discrimination training on stimulus generalization. Journal of Experimental Psychology, 58, 321-334. http:// dx.doi.org/10.1037/h0042606
    • Harris, J. A. (2006). Elemental representations of stimuli in associative learning. Psychological Review, 113, 584 - 605. http://dx.doi.org/10 .1037/0033-295X.113.3.584
    • Holland, P. C. (1990). Event representation in Pavlovian conditioning: Image and action. Cognition, 37, 105-131. http://dx.doi.org/10.1016/ 0010-0277(90)90020-K
    • Honey, R. C. (1990). Stimulus generalization as a function of stimulus novelty and familiarity in rats. Journal of Experimental Psychology: Animal Behavior Processes, 16, 178 -184. http://dx.doi.org/10.1037/ 0097-7403.16.2.178
    • Honey, R., & Bolhuis, J. J. (1997). Imprinting, conditioning, and withinevent learning. Quarterly Journal of Experimental Psychology: Comparative and Physiological Psychology, 50B, 97-110. http://dx.doi.org/ 10.1080/027249997393565
    • Honey, R. C., & Hall, G. (1989). Acquired equivalence and distinctiveness of cues. Journal of Experimental Psychology: Animal Behavior Processes, 15, 338 -346. http://dx.doi.org/10.1037/0097-7403.15.4.338
    • Honey, R. C., Horn, G., & Bateson, P. (1993). Perceptual-learning during filial imprinting: Evidence from transfer of training studies. Quarterly Journal of Experimental Psychology: Comparative and Physiological Psychology, 46B, 253-269.
    • Iordanova, M. D., & Honey, R. C. (2012). Generalization of contextual fear as a function of familiarity: The role of within- and between-context associations. Journal of Experimental Psychology: Animal Behavior Processes, 38, 315-321. http://dx.doi.org/10.1037/a0028689
    • Jones, P. M., Whitt, E. J., & Robinson, J. (2012). Excitotoxic perirhinal cortex lesions leave stimulus-specific habituation of suppression to lights intact. Behavioural Brain Research, 229, 365-371. http://dx.doi .org/10.1016/j.bbr.2012.01.033
    • Kelley, K. (2007). Confidence Intervals for Standardized Effect Sizes: Theory, Application, and Implementation. Journal of Statistical Software, 20, 1-24. http://dx.doi.org/10.18637/jss.v020.i08
    • Killcross, A. S., Kiernan, M. J., Dwyer, D., & Westbrook, R. F. (1998). Effects of retention interval on latent inhibition and perceptual learning. Quarterly Journal of Experimental Psychology: Comparative and Physiological Psychology, 51B, 59 -74.
    • Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142, 573- 603. http://dx.doi.org/ 10.1037/a0029146
    • Lin, T. E., Dumigan, N. M., Recio, S. A., & Honey, R. C. (2016). Mediated configural learning in rats. Quarterly Journal of Experimental Psychology, 1-12. Advance online publication. http://dx.doi.org/10.1080/ 17470218.2016.1188973
    • Lubow, R. E., & Moore, A. U. (1959). Latent inhibition: The effect of nonreinforced pre-exposure to the conditional stimulus. Journal of Comparative and Physiological Psychology, 52, 415- 419. http://dx.doi.org/ 10.1037/h0046700
    • Mackintosh, N. J. (1987). Neurobiology, psychology and habituation. Behavioural Research and Therapy, 2, 81-97. http://dx.doi.org/10.1016/ 0005-7967(87)90079-9
    • Mandler, G. (1980). Recognizing: The Judgement of Previous Occurrence. Psychology Review, 87, 252-271. http://dx.doi.org/10.1037/0033-295X .87.3.252
    • McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental representation: II. Generalization and discrimination. Animal Learning & Behavior, 30, 177-200. http://dx.doi.org/10.3758/ BF03192828
    • Müller, D., Gerber, B., Hellstern, F., Hammer, M., & Menzel, R. (2000). Sensory preconditioning in honeybees. The Journal of Experimental Biology, 203, 1351-1364.
    • Olarte-Sánchez, C. M., Amin, E., Warburton, E. C., & Aggleton, J. P. (2015). Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection. The European Journal of Neuroscience, 42, 3117-3127. http://dx.doi.org/10.1111/ejn.13106
    • Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 61-73. http://dx.doi.org/10 .1037/0033-295X.94.1.61
    • Pearce, J. M. (1994). Similarity and discrimination: A selective review and a connectionist model. Psychological Review, 101, 587- 607. http://dx .doi.org/10.1037/0033-295X.101.4.587
    • Rescorla, R. A. (1976). Stimulus generalization: Some predictions from a model of Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 2, 88 -96. http://dx.doi.org/10.1037//0097- 7403.2.1.88
    • Rescorla, R. A. (1980). Simultaneous and successive associations in sensory preconditioning. Journal of Experimental Psychology: Animal Behavior Processes, 6, 207-216. http://dx.doi.org/10.1037/0097-7403.6.3 .207
    • Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64 -99). New York, NY: Appleton-Century-Crofts.
    • Robinson, J., Sanderson, D. J., Aggleton, J. P., & Jenkins, T. A. (2009). Suppression to visual, auditory, and gustatory stimuli habituates normally in rats with excitotoxic lesions of the perirhinal cortex. Behavioral Neuroscience, 123, 1238 -1250. http://dx.doi.org/10.1037/a0017444
    • Robinson, J., Whitt, E. J., Horsley, R. R., & Jones, P. M. (2010). Familiarity-based stimulus generalization of conditioned suppression in rats is dependent on the perirhinal cortex. Behavioral Neuroscience, 124, 587-599. http://dx.doi.org/10.1037/a0020900
    • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225-237. http://dx.doi.org/10 .3758/PBR.16.2.225
    • Talk, A. C., Gandhi, C. C., & Matzel, L. D. (2002). Hippocampal function during behaviorally silent associative learning: Dissociation of memory storage and expression. Hippocampus, 12, 648 - 656. http://dx.doi.org/ 10.1002/hipo.10098
    • Ward-Robinson, J., & Hall, G. (1996). Backward sensory preconditioning. Journal of Experimental Psychology: Animal Behavior Processes, 22, 395- 404. http://dx.doi.org/10.1037/0097-7403.22.4.395
    • Ward-Robinson, J., & Hall, G. (1998). Backward sensory preconditioning when reinforcement is delayed. Quarterly Journal of Experimental Psychology Section B-Comparative and Physiological Psychology, 51, 349 -362. http://dx.doi.org/10.1080/713932687
    • Whitt, E., Haselgrove, M., & Robinson, J. (2012). Indirect object recognition: Evidence for associative processes in recognition memory. Journal of Experimental Psychology: Animal Behavior Processes, 38, 74 - 83. http://dx.doi.org/10.1037/a0025886
    • Whitt, E., & Robinson, J. (2013). Improved spontaneous object recognition following spaced preexposure trials: Evidence for an associative account of recognition memory. Journal of Experimental Psychology: Animal Behavior Processes, 39, 174 -179. http://dx.doi.org/10.1037/a0031344
    • Wynne, J. D., & Brogden, W. J. (1962). Supplementary report: Effect upon sensory preconditioning of backward, forward, and trace preconditioning training. Journal of Experimental Psychology, 64, 422- 423. http:// dx.doi.org/10.1037/h0044465
    • Xiang, J. Z., & Brown, M. W. (1999). Differential neuronal responsiveness in primate perirhinal cortex and hippocampal formation during performance of a conditional visual discrimination task. The European Journal of Neuroscience, 11, 3715-3724. http://dx.doi.org/10.1046/j.1460-9568 .1999.00790.x Received July 14, 2016
    • Revision received December 13, 2016 Accepted December 14, 2016
  • No related research data.
  • No similar publications.