LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nilsson, Henrik; Nielsen, Thomas A. (2014)
Languages: English
Types: Unknown
Subjects:
A common problem across science and engineering is that aspects of models have to be estimated from observed data. An instance of this familiar to control engineers is system identification. Bayesian inference is a principled way to estimate parameters: exploiting Bayes~ theorem, an equational probabilistic model is “inverted”, yielding a probability distribution for the unknown parameters given the observations. This paper presents Ebba, a declarative language for proba- bilistic modelling where models can be used both “forwards” for probabilistic computation and “backwards” for parameter estimation. The novel aspect of Ebba is its implementation: a shallow, arrows-based, embedding. This provides a clear semantical account and ensures that only models that support estimation can be expressed. As arrow-like notions have proved useful in modelling dynamical systems, this might also suggest an approach to an integrated language for modelling dynamical systems and parameter estimation.

Share - Bookmark

Cite this article