LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Le, Son Thai
Languages: English
Types: Doctoral thesis
Subjects:
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 3.11 Root-mean-square-error (RMSE) of CPE as a function of SNR for DDF PNE techniques employing J1(j)), J2(j) and J3(j) for 16QAM COOFDM transmission with N = 100 subcarriers. . . . . . . . . . . . . . .
    • 3.12 Required SNRs for a RMSE of 0.1 rad as a function of number of subcarriers (N) for DDF PNE techniques employing J1(j)), J2(j) and J3(j) for 16QAM CO-OFDM transmission. . . . . . . . . . . . . . . . . . . . . .
    • 3.13 a) BER performances of PNE techniques, including PA-aided with 16 pilots (blue), BPS with 16 test phases (brown) and DDF blind PNE with different cost functions (red- J1(j), green- J2(j), pink- J3(j)) with feedback loop (solid) and digital phase tracking (open) for 16QAM, the symbol duration linewidth product is 5 10 3; (b) BER performance of the same PNE (only showing digital phase tracking) for 64QAM, the symbol duration linewidth product is 2 10 3. . . . . . . . . . . . . . . . . . . .
    • 3.14 Constellation diagrams for 16QAM at a SNR of 23 dB, before PNE (a), after PNE using PA-aided technique with 16 pilots (b), after PNE with DDF blind PNE technique with digital phase tracking and J1(j) (c), after PNE using BPS with 16 test phases (d), after PNE DDF blind PNE technique with digital phase tracking and J2(j) and J3(j) (e, f). . . . . . . . . . . .
    • 3.15 The SNR penalty at a BER of 10 3 as a function of nTS for PA-aided, BPS and DDF blind PNE with different cost functions for 16QAM transmission with 200 subcarriers; (b) similar result for 16QAM and 100 subcarriers; (c) similar result for 64QAM at a BER of 10 2 and 200 subcarriers; (d) SNR penalty as a function of N at a BER of 10 2 for 64QAM and TS of 10 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    • 3.16 Estimating the MPB with a bin width of using the scanning algorithm with overlapping bins and small scaning step. The histogram with small bin width is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
    • [1] K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers, vol. 113, no. 7, p. 1151, 1966.
    • [2] I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Applied Physics Letters, vol. 17, no. 3, pp. 109- 111, 1970.
    • [3] R. J. Sanferrare, “Terrestrial Lightwave Systems,” AT&T Technical Journal, vol. 66, no. 1, pp. 95-107, 1987.
    • [4] G. P. Agrawal, Fiber-Optic Communication Systems. Wyley, 4th ed., 2010.
    • [5] R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54m m,” Electronics Letters, vol. 23, no. 19, pp. 1026-1028, 1987.
    • [6] P. J. Winzer, “High-spectral-efficiency optical modulation formats,” Journal of Lightwave Technology, vol. 30, no. 24, pp. 3824-3835, 2012.
    • [7] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2014-2019. Available online at http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/ip-ngn-ip-next-generation-network/white paper c11-481360.pdf,” 2015.
    • [8] X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital Signal Processing Techniques Enabling Multi-Tb/s Superchannel Transmission: An overview of recent advances
    • [9] D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7- Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation,” in 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp. 1-3, 2011.
    • [10] S. Sano, Akihide, Kobayashi, Takayuki, Yamanaka, H. Matsuura, AkihikoKawakami, and H. Miyamoto, Yutaka Ishihara, Koichi Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band All-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Optical Fiber Communication Conference, p. PDP5C.3, 2012.
    • [11] P. J. Winzer, “Making spatial multiplexing a reality,” Nature Photonics, vol. 8, no. 5, pp. 345-348, 2014.
    • [12] D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, and M. Suzuki, “2.05 Peta-bit/s Super-Nyquist-WDM SDM Transmission Using 9.8-km 6-mode 19-core Fiber in Full C band,” in ECOC, (Valencia, Spain), 2015.
    • [13] B. J. Puttnam, R. S. Lu´ıs, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s Transmission Using a 22 Core Homogeneous Single-Mode Multi-Core Fiber and Wideband Optical Comb,” in ECOC, (Valencia, Spain), 2015.
    • [14] R.-j. Essiambre, S. Member, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, and S. Member, “Capacity Limits of Optical Fiber Networks,” vol. 28, no. 4, pp. 662- 701, 2010.
    • [15] A.D. Ellis and D. Cotter, “Approaching the Non-Linear Shannon Limit,” Journal of Lightwave Technology, vol. 28, pp. 423-433, feb 2010.
    • [16] S. Chandrasekhar, X. L. X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200- km of ultra-large-area fiber,” in European Conference on Optical Communication, vol. 2009-Suppl, pp. 7-8, 2009.
    • [17] X. Liu, S. Chandrasekhar, P. J. Winzer, T. Lotz, J. Carlson, J. Yang, and G. Cheren, “1 . 5-Tb/s Guard-Banded Superchannel Transmission over 56 16QAM Signals with 5 . 75-b/s/Hz Net Spectral Efficiency,” in ECOC, 2012.
    • [18] G. Raybon, S. Randel, a. Adamiecki, P. J. Winzer, L. Salamanca, R. Urbanke, S. Chandrasekhar, a. Konczykowska, F. Jorge, J. Y. Dupuy, L. L. Buhl, S. Draving, M. Grove, and K. Rush, “1-Tb/s dual-carrier 80-GBaud PDM-16QAM WDM transmission at 5.2 b/s/Hz over 3200 km,” 2012 IEEE Photonics Conference, IPC 2012, pp. 6-7, 2012.
    • [19] S. T. Le, M. E. McCarthy, and S. K. Turitsyn, “Optimized Hybrid QPSK/8QAM for CO-OFDM Transmissions,” in International Symposium on communications systems Networks and Digital Signal Processing, 2014.
    • [20] S. Haykin, Communication Sytems. John Wiley & Sons, Inc, 2001.
    • [21] R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats,” IEEE Photonics Technology Letters, vol. 24, pp. 61-63, jan 2012.
    • [22] R. A. Shafik, S. Rahman, and R. Islam, “On the Extended Relationships Among EVM, BER and SNR as Performance Metrics,” in Electrical and Computer Engineering, 2006. ICECE '06. International Conference on, pp. 408-411, 2006.
    • [23] H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Optics Express, vol. 15, no. 8, pp. 4410-4418, 2007.
    • [24] Z. Fan, L. Yazhi, W. Yandan, L. Li, Z. Lixin, C. Zhangyuan, and W. Chengbin, “Experimental Comparison of Different BER Estimation Methods for Coherent Optical QPSK Transmission Systems,” Photonics Technology Letters, IEEE, vol. 23, no. 18, pp. 1343-1345, 2011.
    • [26] S. T. Le, K. J. Blow, V. K. Menzentsev, and S. K. Turitsyn, “Comparison of numerical bit error rate estimation methods in 112Gbs QPSK CO-OFDM transmission,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on, pp. 1-3, 2013.
    • [27] S. T. Le, K. J. Blow, V. K. Mezentsev, and S. K. Turitsyn, “Bit Error Rate Estimation Methods for QPSK CO-OFDM Transmission,” Lightwave Technology, Journal of, vol. 32, no. 17, pp. 2951-2959, 2014.
    • [28] S. T. Le, M. E. McCarthy, N. Mac Suibhne, E. Giacoumidis, N. J. Doran, A. D. Ellis, and K. J. Blow, “Comparison of Bit Error Rate Estimation Methods for QPSK CO-OFDM Transmission,” IEEE Photonics Technology Letters, vol. 26, pp. 2244- 2247, nov 2014.
    • [29] A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompensated fiber links,” in Optical Communication (ECOC), 2010 36th European Conference and Exhibition on, pp. 1-3, 2010.
    • [30] J. C. Cartledge, J. Downie, J. E. Hurley, X. Zhu, and I. Roudas, “Bit Error Ratio Performance of 112 Gb/s PM-QPSK Transmission Systems,” Journal of Lightwave Technology, vol. 30, pp. 1475-1479, may 2012.
    • [31] H. L. Fan, J. F. Sun, P. Yang, and D. S. Li, “A robust timing and frequency synchronization algorithm for HF MIMO OFDM systems,” 2010 Global Mobile Congress, GMC'2010, vol. 2, no. 4, pp. 822-839, 2010.
    • [32] S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photonics Technology Letters, vol. 22, no. 17, pp. 1288-1290, 2010.
    • [33] S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM Transmission With 2-b/s/Hz Spectral Efficiency Over 1000 km of SSMF,” Lightwave Technology, Journal of, vol. 27, no. 3, pp. 177-188, 2009.
    • [34] L. Xiang, S. Chandrasekhar, Z. Benyuan, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” Lightwave Technology, Journal of, vol. 29, no. 4, pp. 483-490, 2011.
    • [35] R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent Optical Single Carrier Transmission Using Overlap Frequency Domain Equalization for Long-Haul Optical Systems,” Lightwave Technology, Journal of, vol. 27, no. 16, pp. 3721-3728, 2009.
    • [36] S. J. Savory, “Digital filters for coherent optical receivers,” Optics Express, vol. 16, no. 2, p. 804, 2008.
    • [37] Z. Wang, Y. Qiao, Y. Xu, and Y. Ji, “Statistical characterization of the nonlinear noise in 2.8 Tbit/s PDM-16QAM CO-OFDM system,” Optics Express, vol. 21, no. 15, pp. 18034-18042, 2013.
    • [39] S. T. Le, T. Kanesan, E. Giacoumids, N. Doran, and A. Ellis, “Quasi-pilot Aided Phase Noise Estimation for Coherent Optical OFDM Systems,” Photonics Technology Letters, IEEE, vol. 26, no. 5, pp. 504-507, 2014.
    • [40] Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission.,” Optics express, vol. 19, no. 5, pp. 4472-4484, 2011.
    • [41] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Transactions on Communications, vol. 45, no. 12, pp. 1613-1621, 1997.
    • [42] K. Kikuchi and S. Tsukamoto, “Evaluation of Sensitivity of the Digital Coherent Receiver,” Journal of Lightwave Technology, vol. 26, no. 13, pp. 1817-1822, 2008.
    • [43] E. Giacoumidis, M. A. Jarajreh, S. Sygletos, S. T. Le, F. Farjady, A. Tsokanos, A. Hamie´, E. Pincemin, Y. Jaoue¨n, A. D. Ellis, and N. J. Doran, “Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links,” Optics Express, vol. 22, no. 9, pp. 10975- 10986, 2014.
    • [44] S. Wu and Y. Bar-Ness, “OFDM Systems in the Presence of Phase Noise: Consequences and Solutions,” Communications, IEEE Transactions on, vol. 52, no. 5, p. 855, 2004.
    • [45] L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” Communications, IEEE Transactions on, vol. 46, no. 5, pp. 580-583, 1998.
    • [47] Y. Mostofi, D. C. Cox, and A. Bahai, “ICI mitigation for mobile OFDM receivers,” in Communications, 2003. ICC '03. IEEE International Conference on, vol. 5, pp. 3351-3355 vol.5, 2003.
    • [48] A. F. Molisch, M. Toeltsch, and S. Vermani, “Iterative Methods for Cancellation of Intercarrier Interference in OFDM Systems,” Vehicular Technology, IEEE Transactions on, vol. 56, no. 4, pp. 2158-2167, 2007.
    • [49] T. Kanesan, S. T. Le, D. Roque, and A. D. Ellis, “Non-rectangular perfect reconstruction pulse shaping based ICI reduction in CO-OFDM,” Optics Express, vol. 22, no. 2, pp. 1749-1759, 2014.
    • [50] Q. Zhuge, M. H. Morsy-Osman, and D. V. Plant, “Low overhead intra-symbol carrier phase recovery for reduced-guard-interval CO-OFDM,” Journal of Lightwave Technology, vol. 31, no. 8, pp. 1158-1169, 2013.
    • [51] W. Shieh, “Maximum-Likelihood Phase and Channel Estimation for Coherent Optical OFDM,” Photonics Technology Letters, IEEE, vol. 20, no. 8, pp. 605-607, 2008.
    • [52] C. Shengjiao, K. Pooi Yuen, and Y. Changyuan, “Decision-Aided, Pilot-Aided, Decision-Feedback Phase Estimation for Coherent Optical OFDM Systems,” Photonics Technology Letters, IEEE, vol. 24, no. 22, pp. 2067-2069, 2012.
    • [53] M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM.,” Optics express, vol. 18, no. 20, pp. 20651-20660, 2010.
    • [54] H. Youngsun and C. Wonzoo, “Non-Data-Aided Phase Noise Suppression Scheme for CO-OFDM Systems,” Photonics Technology Letters, IEEE, vol. 25, no. 17, pp. 1703-1706, 2013.
    • [55] T. Pfau, S. Hoffmann, and R. Noe´, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” Journal of Lightwave Technology, vol. 27, no. 8, pp. 989-999, 2009. 198
    • [56] S. T. Le, M. E. McCarthy, N. M. Suibhne, P. A. Haigh, E. Giacoumidis, N. J. Doran, A. D. Ellis, and S. K. Turitsyn, “Decision-Directed-Free Blind Phase Noise Estimation for CO-OFDM,” 2015.
    • [57] S. Le, P. Haigh, A. Ellis, and S. Turitsyn, “Blind Phase Noise Estimation for COOFDM Transmissions,” Journal of Lightwave Technology, vol. PP, no. 99, pp. 1-1, 2015.
    • [58] M. G. Taylor, “Phase Estimation Methods for Optical Coherent Detection Using Digital Signal Processing,” Lightwave Technology, Journal of, vol. 27, no. 7, pp. 901-914, 2009.
    • [59] C. Wonzoo, W. A. Sethares, and C. R. Johnson, “Performance analysis of blind adaptive phase offset correction based on dispersion minimization,” Signal Processing, IEEE Transactions on, vol. 52, no. 6, pp. 1750-1759, 2004.
    • [60] S. T. Le, N. M. Suibhne, M. E. McCarthy, A. D. Ellis, and S. K. Turitsyn, “Multiplier-free Blind Phase Noise Estimation for CO-OFDM Transmission,” in ECOC, (Valencia, Spain, paper Mo.4.3.6), 2015.
    • [61] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” Electronic Computers, IRE Transactions on, vol. EC-8, no. 3, pp. 330-334, 1959.
    • [62] M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Optics Express, vol. 18, no. 20, pp. 20651-20660, 2010.
    • [63] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical Journal, vol. 27, pp. 379-432, 1948.
    • [64] P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical bre communications,” pp. 1027-1030, 2001.
    • [65] D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Optics Express, vol. 19, no. 6, pp. 5219-5224, 2011.
    • [66] J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Optics Express, vol. 21, no. 20, pp. 24344-24367, 2013.
    • [67] I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference, (San Francisco, California), p. M3C.1, Optical Society of America, 2014.
    • [68] E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation,” Journal of Lightwave Technology, vol. 26, pp. 3416- 3425, oct 2008.
    • [69] E. Giacoumidis, S. T. Le, M. Ghanbarisabagh, M. McCarthy, I. Aldaya, S. Mhatli, M. A. Jarajreh, P. A. Haigh, N. J. Doran, A. D. Ellis, and B. J. Eggleton, “Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based nonlinear equalization.,” Optics letters, vol. 40, pp. 5113-6, nov 2015.
    • [70] E. Giacoumidis, S. T. Le, I. Aldaya, J. Wei, M. McCarthy, N. Doran, and B. Eggleton, “Experimental Comparison of Artificial Neural Network and Volterra based Nonlinear Equalization for CO-OFDM,” in Optical Fiber Communication Conference, p. W3A.4, OSA, mar 2016.
    • [71] E. Giacoumidis, S. Mhatli, T. Nguyen, S. T. Le, I. Aldaya, M. McCarthy, and B. Eggleton, “Kerr-Induced Nonlinearity Reduction in Coherent Optical OFDM by Low Complexity Support Vector Machine Regression-based Equalization,” in Optical Fiber Communication Conference, p. Th2A.49, OSA, mar 2016.
    • [72] E. Giacoumidis, I. Aldaya, M. A. Jarajreh, A. Tsokanos, S. Le, F. Farjady, Y. Jaouen, A. D. Ellis, and N. J. Doran, “Volterra-based reconfigurable nonlinear equalizer for coherent OFDM,” IEEE Photonics Technology Letters, vol. 26, no. 14, pp. 1383-1386, 2014.
    • [73] S. T. Le, M. McCarthy, S. K. Turitsyn, I. Phillips, D. Lavery, T. Xu, P. Bayvel, and A. Ellis, “Optical and Digital Phase Conjugation Techniques for Fiber Nonlinearity Compensation,” in OECC, 2015.
    • [74] A. Ellis, S. T. Le, M. Al-Khateeb, S. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit,” in IEEE Summer Topical, 2015.
    • [75] M. Jarajreh, E. Giacoumidis, I. Aldaya, S. T. Le, A. Tsokanos, Z. Ghassemlooy, and N. J. Doran, “Artificial Neural Network Nonlinear Equalizer for Coherent Optical OFDM,” Photonics Technology Letters, vol. 27, no. 4, 2015.
    • [76] G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Optics Express, vol. 22, no. 24, pp. 30053-30062, 2014.
    • [77] N. Alic, E. Myslivets, E. Temprana, B. P. P. Kuo, and S. Radic, “Nonlinearity Cancellation in Fiber Optic Links Based on Frequency Referenced Carriers,” Lightwave Technology, Journal of, vol. 32, no. 15, pp. 2690-2698, 2014.
    • [78] C. Xi, L. Xiang, S. Chandrasekhar, B. Zhu, and R. W. Tkach, “Experimental demonstration of fiber nonlinearity mitigation using digital phase conjugation,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference, pp. 1-3, 2012.
    • [79] S. L. Jansen, D. Van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” Lightwave Technology, Journal of, vol. 24, no. 1, pp. 54-64, 2006.
    • [80] S. Watanabe, S. Kaneko, and T. Chikama, “Long-Haul Fiber Transmission Using Optical Phase Conjugation,” Optical Fiber Technology, vol. 2, no. 2, pp. 169-178, 1996.
    • [81] X. Liu, a. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phaseconjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nature Photonics, vol. 7, pp. 560-568, may 2013.
    • [82] X. Liu, “Twin-Wave Based Optical Transmission with Enhanced Linear and Nonlinear Performances,” Journal of Lightwave Technology, vol. PP, no. 99, p. 1, 2014.
    • [83] X. Yi, X. Chen, C. Li, M. Luo, Q. Yang, Z. Li, and K. Qiu, “Experimental Demonstration of Digital Coherent Superposition of Optical OFDM Subcarrier Pairs for Mitigation of Linear and Nonlinear Phase Noise,” Optical Fiber Communication Conference, vol. 1, no. 3, p. Tu3G.6, 2014.
    • [84] S. T. Le, M. E. McCarthy, N. M. Suibhne, A. D. Ellis, and S. K. Turitsyn, “Phaseconjugated Pilots for Fibre Nonlinearity Compensation in CO-OFDM Transmission,” 2014.
    • [85] S. T. Le, M. E. McCarthy, N. MacSuibhne, A. D. Ellis, and S. K. Turitsyn, “Phaseconjugated Pilots for Fibre Nonlinearity Compensation in CO-OFDM Transmission,” Lightwave Technology, Journal of, vol. PP, no. 99, p. 1, 2015.
    • [86] T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient Dual Phase-Conjugate Twin Waves with Orthogonally Multiplexed Quadrature Pulseshaped Signals,” Optical Fiber Communication Conference, p. M3C.6, 2014.
    • [87] W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” Journal of Optical Networking, vol. 7, no. 3, pp. 234-255, 2008.
    • [89] S. T. Le, M. E. McCarthy, N. M. Suibhne, M. A. Z. Al-Khateeb, E. Giacoumidis, N. Doran, A. D. Ellis, and S. K. Turitsyn, “Demonstration of Phase-Conjugated Subcarrier Coding for Fiber Nonlinearity Compensation in CO-OFDM Transmission,” Journal of Lightwave Technology, vol. 33, no. 11, pp. 2206-2212, 2015. 202
    • [90] S. T. Le, E. Giacoumidis, N. Doran, A. D. Ellis, and S. K. Turitsyn, “Phaseconjugated Subcarrier Coding for Fibre Nonlinearity Mitigation in CO-OFDM Transmission,” in ECOC, (Cannes, France, paper We.3.3.2), 2014.
    • [91] S. T. Le, K. Blow, and S. Turitsyn, “Power pre-emphasis for suppression of FWM in coherent optical OFDM transmission,” Optics Express, vol. 22, no. 6, pp. 7238- 7248, 2014.
    • [92] F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: A promising high-speed optical transport technology,” Bell Labs Technical Journal, vol. 14, no. 1, pp. 125-146, 2009.
    • [93] D. A. Cleland, A. D. Ellis, and C. H. F. Sturrock, “Precise modelling of four wave mixing products over 400 km of step-index fibre,” Electronics Letters, vol. 28, no. 12, pp. 1171-1173, 1992.
    • [94] B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tonebased nonlinearity compensation for optical OFDM systems,” in Optical Communication (ECOC), 2010 36th European Conference and Exhibition on, pp. 1-3, 2010.
    • [95] X. Liu, S. Chandrasekhar, P. J. Winzer, a. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime.,” Optics express, vol. 20, pp. 19088-95, aug 2012.
    • [96] D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems.,” Optics express, vol. 19, pp. 3449-54, feb 2011.
    • [108] A. Hasegawa, Optical solitons in fibers, vol. 2. 2003.
    • [109] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-fourier analysis for nonlinear problems,” Studies in Applied Mathematics, vol. 53, pp. 249-315, 1974.
    • [110] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, vol. 1. 2003.
    • [111] M. Chertkov, A. Peleg, and I. Gabitov, “Inelastic interchannel collisions of pulses in optical fibers in the presence of third-order dispersion,” 2004.
    • [112] J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Temporal Solitonic Crystals and Non-Hermitian Informational Lattices,” Phys. Rev. Lett., vol. 108, no. 183902, 2012.
    • [119] H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noise Tolerance of Eigenvalue Modulated Optical Transmission System Based on Digital Coherent Technology,” vol. 0, no. July, pp. 778-780, 2014.
    • [120] S. Hari, F. Kschischang, and M. Yousefi, “Multi-eigenvalue communication via the nonlinear Fourier transform,” in Communications (QBSC), 2014 27th Biennial Symposium on, pp. 92-95, 2014.
    • [121] S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, “Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers.,” Optics express, vol. 22, no. 22, pp. 26720-41, 2014.
    • [126] S. T. Le, J. E. Prilepsky, P. Rosa, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinear Inverse Synthesis for Optical Links with Distributed Raman Amplification,” Journal of Lightwave Technology, vol. 34, no. 5, 2016.
    • [127] S. T. Le, S. Wahl, D. Lavery, J. E. Prilepsky, and S. K. Turitsyn, “Reduced Complexity Nonlinear Inverse Synthesis for Nonlinearity Compensation in Optical Fiber,” in CLEO, 2015.
    • [128] S. Wahls, S. T. Le, J. E. Prilepsky, H. V. Poor, and S. K. Turitsyn, “Digital Backpropagation in the Nonlinear Fourier Domain,” 2015.
    • [146] L. L. Frumin, O. V. Belai, E. V. Podivilov, and D. A. Shapiro, “Efficient numerical method for solving the direct Zakharov-Shabat scattering problem,” Journal of the Optical Society of America B, vol. 32, no. 2, pp. 290-296, 2015.
    • [147] S. Wahls and H. V. Poor, “Inverse Nonlinear Fourier Transforms Via Interpolation : The Ablowitz-Ladik Case,” pp. 1848-1855, 2014.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Techniques for noise and nonlinear impairments compensation in CO-OFDM transmission

    201589
    89%

    Experimental demonstration of data-dependent pilot-aided phase noise estimation for CO-OFDM

    201482
    82%

    Demonstration of phase-conjugated subcarrier coding for fiber nonlinearity compensation in CO-OFDM transmission

    201580
    80%

    Phase-conjugated pilots for fibre nonlinearity compensation in CO-OFDM transmission

    201580
    80%

    SIMULATION ET MESURE D'UN SYSTÈME DE TRANSMISSION CO-OFDM EMPLOYANT DES AMPLIFICATEURS OPTIQUES À SEMI-CONDUCTEURS

    201277
    77%

    Phase-conjugated subcarrier coding for fibre nonlinearity mitigation in CO-OFDM transmission

    -84
    84%

    Bit error rate estimation methods for QPSK CO-OFDM transmission

    201486
    86%

    Performance Evaluation and Simulation of OFDM in Optical Communication Systems

    201582
    82%

    Effect of Transmission Impairments in CO-OFDM Based Elastic Optical Network Design

    201775
    75%

    Time-Frequency Based Channel Estimation for High-Mobility OFDM Systems—Part II: Cooperative Relaying Case

    201085
    85%

    Design and Implementation of DSP algorithms for 100 Gbps Coherent Optical-OFDM (CO-OFDM) Systems

    201377
    77%

    PERFORMANCES DES SOA SUR UNE LARGE BANDE PASSANTE OPTIQUE DANS UN SYSTÈME DE TRANSMISSION OPTIQUE CO-OFDM

    201187
    87%

    On the optimum performance of multicarrier optical signals with nonlinear phase distortion

    201382
    82%

    Phase Noise Influence in Long-range Coherent Optical OFDM Systems with Delay Detection, IFFT Multiplexing and FFT Demodulation

    201279
    79%

    A Joint Linearization/Companding Approach for Improving a CO-OFDM Transmitter

    201572
    72%

    Application of Complex Wavelet Packet Transform (CWPT) in Coherent Optical OFDM (CO-OFDM) Communication Systems

    201474
    74%

Share - Bookmark

Cite this article