Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hazut, Ori; Waichman, Sharon; Subramani, Thangavel; Sarkar, Debabrata; Dash, Sthitaprajna; Roncal-Herrero, Teresa; Kröger, Roland; Yerushalmi, Roie (2016)
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture
We present a synthetic strategy that takes advantage of the inherent asymmetry exhibited by semiconductor nanowires prepared by Au-catalyzed chemical vapor deposition (CVD). The metal–semiconductor junction is used for activating etch, deposition, and modification steps localized to the tip area using a wet-chemistry approach. The hybrid nanostructures obtained for the coinage metals Cu, Ag, and Au resemble the morphology of grass flowers, termed here Nanofloret hybrid nanostructures consisting of a high aspect ratio SiGe nanowire (NW) with a metallic nanoshell cap. The synthetic method is used to prepare hybrid nanostructures in one step by triggering a programmable cascade of events that is autonomously executed, termed self-processing synthesis. The synthesis progression was monitored by ex situ transmission electron microscopy (TEM), in situ scanning transmission electron microscopy (STEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses to study the mechanistic reaction details of the various processes taking place during the synthesis. Our results indicate that the synthesis involves distinct processing steps including localized oxide etch, metal deposition, and process termination. Control over the deposition and etching processes is demonstrated by several parameters: (i) etchant concentration (water), (ii) SiGe alloy composition, (iii) reducing agent, (iv) metal redox potential, and (v) addition of surfactants for controlling the deposited metal grain size. The NF structures exhibit broad plasmonic absorption that is utilized for demonstrating surface-enhanced Raman scattering (SERS) of thiophenol monolayer. The new type of nanostructures feature a metallic nanoshell directly coupled to the crystalline semiconductor NW showing broad plasmonic absorption.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) McGuire, G. E. Semiconductor Materials and Process Technology Handbook: For Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI); Noyes Publications: Park Ridge, N.J., U.S.A., 1988.
    • (2) Koch, C. C. Nanostructured Materials Processing, Properties, and Applications; Second.; William Andrew Pub.: Norwich, N.Y., U.S.A., 2007.
    • (3) Cölfen, H.; Mann, S. Angew. Chem. Int. Ed. Engl. 2003, 42, 2350.
    • (4) Costi, R.; Saunders, A. E.; Banin, U. Angew. Chem. Int. Ed. Engl. 2010, 49, 4878.
    • (5) Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Adv. Mater. 2012, 24, 5045.
    • (6) Walther, A.; Müller, A. H. E. Chem. Rev. 2013, 113, 5194.
    • (7) Loget, G.; Kuhn, A. J. Mater. Chem. 2012, 22, 15457.
    • (8) Zeeshan, M. A.; Shou, K.; Pané, S.; Pellicer, E.; Sort, J.; Sivaraman, K. M.; Baró, M. D.; Nelson, B. J. Nanotechnology 2011, 22, 275713.
    • (9) Jia, G.; Sitt, A.; Hitin, G. B.; Hadar, I.; Bekenstein, Y.; Amit, Y.; Popov, I.; Banin, U. Nat. Mater. 2014, 13, 301.
    • (10) Kurppa, K.; Jiang, H.; Szilvay, G. R.; Nasibulin, A. G.; Kauppinen, E. I.; Linder, M. B. Angew. Chemie 2007, 119, 6566.
    • (11) Fischer, V.; Lieberwirth, I.; Jakob, G.; Landfester, K.; Muñoz-Espí, R. Adv. Funct. Mater. 2013, 23, 451.
    • (12) Xu, C.; Zeng, Y.; Rui, X.; Xiao, N.; Zhu, J.; Zhang, W.; Chen, J.; Liu, W.; Tan, H.; Hng, H. H.; Yan, Q. ACS Nano 2012, 6, 4713.
    • (13) Touahir, L.; Galopin, E.; Boukherroub, R.; GougetLaemmel, A. C.; Chazalviel, J.-N.; Ozanam, F.; Saison, O.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.; Szunerits, S. Analyst 2011, 136, 1859.
    • (14) Halouzka, V.; Jakubec, P.; Kvitek, L.; Likodimos, V.; Kontos, A. G.; Papadopoulos, K.; Falaras, P.; Hrbac, J. J. Electrochem. Soc. 2013, 160, B54.
    • (15) Wipf, M.; Stoop, R. L.; Tarasov, A.; Bedner, K.; Fu, W.; Wright, I. A.; Martin, C. J.; Constable, E. C.; Calame, M.; Schönenberger, C. ACS Nano 2013, 7, 5978.
    • (16) Zhang, B.; Wang, H.; Lu, L.; Ai, K.; Zhang, G.; Cheng, X. Adv. Funct. Mater. 2008, 18, 2348.
    • (17) Yilmaz, M.; Senlik, E.; Biskin, E.; Yavuz, M. S.; Tamer, U.; Demirel, G. Phys. Chem. Chem. Phys. 2014, 16, 5563.
    • (18) Banan Sadeghian, R.; Islam, M. S.; Saif Islam, M. Nat. Mater. 2011, 10, 135.
    • (19) Qu, Y.; Xue, T.; Zhong, X.; Lin, Y.-C.; Liao, L.; Choi, J.; Duan, X. Adv. Funct. Mater. 2010, 20, 3005.
    • (20) Ouyang, S.; Kikugawa, N.; Zou, Z.; Ye, J. Appl. Catal. A Gen. 2009, 366, 309.
    • (21) Talafi Noghani, M.; Vadjed Samiei, M. H. Plasmonics 2013, 8, 1155.
    • (22) Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A. Sci. Rep. 2013, 3, 1507.
    • (23) Ghosh, H.; Bouhekka, A.; Bürgi, T. Phys. Chem. Chem. Phys. 2014, 16, 19402.
    • (24) Recio-Sánchez, G.; Namura, K.; Suzuki, M.; MartínPalma, R. J. Nanoscale Res. Lett. 2014, 9, 487.
    • (25) Gaiduk, P. I.; Larsen, A. N. Phys. status solidi 2014, 211, 2455.
    • (26) Porter, L. A.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M. Nano Lett. 2002, 2, 1067.
    • (27) Sayed, S. Y.; Wang, F.; Malac, M.; Meldrum, A.; Egerton, R. F.; Buriak, J. M. ACS Nano 2009, 3, 2809.
    • (28) Magagnin, L.; Maboudian, R.; Carraro, C. J. Phys. Chem. B 2002, 106, 401.
    • (29) Fabre, B.; Hennous, L.; Ababou-Girard, S.; Meriadec, C. ACS Appl. Mater. Interfaces 2013, 5, 338.
    • (30) Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Adv. Mater. 2011, 23, 285.
    • (31) Zuo, Z.; Cui, G.; Shi, Y.; Liu, Y.; Ji, G. Nanoscale Res. Lett. 2013, 8, 193.
    • (32) Murthy, M. K.; Hill, H. J. Am. Ceram. Soc. 1965, 48, 109.
    • (33) Nassiopoulou, A. G.; Gianneta, V.; Katsogridakis, C. Nanoscale Res. Lett. 2011, 6, 597.
    • (34) Bang, B. M.; Kim, H. J.; Park, S. J. Electrochem. Sci. Technol. 2011, 2, 157.
    • (35) Syu, C.-Y.; Yang, H.-W.; Hsu, F.-H.; Wang, J.-H. Phys. Chem. Chem. Phys. 2014, 16, 7481.
    • (36) Liu, X.; Madix, R. J.; Friend, C. M. Chem. Soc. Rev. 2008, 37, 2243.
    • (37) Manzoli, M.; Chiorino, A.; Vindigni, F.; Boccuzzi, F. Catal. Today 2012, 181, 62.
    • (38) Maldotti, A.; Molinari, A.; Juárez, R.; Garcia, H. Chem. Sci. 2011, 2, 1831.
    • (39) Zaccheria, F.; Ravasio, N.; Psaro, R.; Fusi, A. Chem. Commun. 2005, 253.
    • (40) Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391.
    • (41) Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; Rubert, A. A.; Salvarezza, R. C. Acc. Chem. Res. 2012, 45, 1183.
    • (42) Abellan, P.; Woehl, T. J.; Parent, L. R.; Browning, N. D.; Evans, J. E.; Arslan, I. Chem. Commun. 2014, 50, 4873.
    • (43) Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution; M. Dekker: New York, 1985.
    • (44) Lu, Q.; Lu, Z.; Lu, Y.; Lv, L.; Ning, Y.; Yu, H.; Hou, Y.; Yin, Y. Nano Lett. 2013, 13, 5698.
    • (45) Carotenuto, G.; Pepe, G. P.; Nicolais, L. Eur. Phys. J. B 2000, 16, 11.
    • (46) Wu, Y.; Wadia, C.; Ma, W.; Sadtler, B.; Alivisatos, A. P. Nano Lett. 2008, 8, 2551.
    • (47) Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y.; Kim, Y.- K.; Lee, Y.-S.; Jeong, D. H.; Cho, M.-H. Nanomedicine 2007, 3, 95.
    • (48) Lim, S.; Joyce, M.; Fleming, P. D.; Aijazi, A. T.; Atashbar, M. J. Imaging Sci. Technol. 2013, 57, 50506.
    • (49) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett. 2003, 3, 1229.
    • (50) Ru, E. Le; Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects; Elsevier, 2008.
    • (51) Wagner, R. S.; Ellis, W. C. Trans. Metall. Soc. AIME 1965, 233, 1053.
    • (52) Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J.; Lieber, C. M. Appl. Phys. Lett. 2001, 78, 2214.
    • (53) Schwalbach, E. J.; Voorhees, P. W. Nano Lett. 2008, 8, 3739.
    • (54) Jia, X.; Hu, G.; Nitze, F.; Barzegar, H. R.; Sharifi, T.; Tai, C.-W.; Wågberg, T. ACS Appl. Mater. Interfaces 2013, 5, 12017.
    • (55) Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127.
    • (56) Zhu, C.; Dong, S. Nanoscale 2013, 5, 10765.
    • (57) Kumar, B.; Lee, K. Y.; Park, H.-K.; Chae, S. J.; Lee, Y. H.; Kim, S.-W. ACS Nano 2011, 5, 4197.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article