LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jones, S; Hirschi, R; Pignatari, M; Heger, A; Georgy, C; Nishimura, N; Fryer, C; Herwig, F (2015)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: Astrophysics - Solar and Stellar Astrophysics, QB

Classified by OpenAIRE into

arxiv: Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics
Massive stars are key sources of radiative, kinetic, and chemical feedback in the universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes---GENEC, KEPLER and MESA---to compute non-rotating stellar models of $15~\mathrm{M}_\odot$, $20~\mathrm{M}_\odot$, and $25~\mathrm{M}_\odot$ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The GENEC and KEPLER models hold physics assumptions used in large grids of published models. The MESA code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by GENEC. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool MPPNP. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than $30\,\%$---smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g., helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander D. R., Ferguson J. W., 1994, ApJ, 437, 879 Angulo C. et al., 1999, Nuclear Physics A, 656, 3 Arcones A., Montes F., 2011, ApJ, 731, 5 Arnould M., Goriely S., 2003, Physics Reports, 384, 1 Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARAsA, 47, 481
    • Bennett M. E. et al., 2012, MNRAS, 420, 3047 Blinnikov S. I., Dunina-Barkovskaya N. V., Nadyozhin D. K., 1996, ApJS, 106, 171
    • |, 1998, ApJS, 118, 603
    • Brott I. et al., 2011, A&A, 530, A115 Brown J. M., Woosley S. E., 2013, ApJ, 769, 99 Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 Buchler J. R., Yueh W. R., 1976, ApJ, 210, 440 Buchmann L., 1996, ApJL, 468, L127 |, 1997, ApJL, 479, L153
    • Canuto V., 1970, ApJ, 159, 641
    • Castellani V., Chie A., Tornambe A., Pulone L., 1985, ApJ, 296, 204
    • Caughlan G. R., Fowler W. A., 1988, Atomic Data and Nuclear Data Tables, 40, 283
    • Cescutti G., Chiappini C., 2014, A&A, 565, A51 Chiappini C., Matteucci F., Gratton R., 1997, ApJ, 477, 765
    • Chin C.-W., 1965, ApJ, 142, 1481
    • Christy R. F., 1966, ApJ, 144, 108
    • Cooper G., 1973, Lawrence Livermore Laboratory, UCRL7524
    • Couch S. M., Ott C. D., 2013, ApJL, 778, L7 Cyburt R. H. et al., 2010, ApJS, 189, 240 de Jager C., Nieuwenhuijzen H., van der Hucht K. A., 1988, A&AS, 72, 259
    • Eggenberger P., Meynet G., Maeder A., Hirschi R., Charbonnel C., Talon S., Ekstrom S., 2008, Astrophysics and Space Science, 316, 43
    • Ekstrom S. et al., 2012, A&A, 537, A146 El Eid M. F., Meyer B. S., The L.-S., 2004, ApJ, 611, 452 Eldridge J. J., Stanway E. R., 2009, MNRAS, 400, 1019 Eldridge J. J., Tout C. A., 2004, MNRAS, 353, 87 Farouqi K., Kratz K.-L., Pfei er B., Rauscher T., Thielemann F.-K., Truran J. W., 2010, ApJ, 712, 1359 Ferguson J. W., Alexander D. R., Allard F., Barman T., Bodnarik J. G., Hauschildt P. H., He ner-Wong A., Tamanai A., 2005, ApJ, 623, 585
    • Fraser M. et al., 2011, MNRAS, 417, 1417 Freytag B., Ludwig H.-G., Ste en M., 1996, A&A, 313, 497 Frischknecht U., Hirschi R., Thielemann F.-K., 2012, A&A, 538, L2
    • Frohlich C., Hix W. R., Mart nez-Pinedo G., Liebendorfer M., Thielemann F.-K., Bravo E., Langanke K., Zinner N. T., 2006, New Astronomy Reviews, 50, 496 Fynbo H. O. U. et al., 2005, Nat., 433, 136 Gasques L. R., Brown E. F., Chie A., Jiang C. L., Limongi M., Rolfs C., Wiescher M., Yakovlev D. G., 2007, Physical Reviews C, 76, 035802
    • Georgy C. et al., 2013, A&A, 558, A103 Glebbeek E., Gaburov E., de Mink S. E., Pols O. R., Portegies Zwart S. F., 2009, A&A, 497, 255 Grevesse N., Noels A., 1993, in Origin and Evolution of the Elements, Prantzos N., Vangioni-Flam E., Casse M., eds., pp. 15{25
    • Heger A., 1998, PhD thesis, Ph.D. Dissertation, MaxPlanck-Institut fur Astrophysik, unpublished (1998) Heger A., Fryer C. L., Woosley S. E., Langer N., Hartmann D. H., 2003, ApJ, 591, 288
    • Heger A., Langer N., Woosley S. E., 2000, ApJ, 528, 368 Heger A., Woosley S. E., 2002, ApJ, 567, 532 Heger A., Woosley S. E., Spruit H. C., 2005, ApJ, 626, 350 Henyey L. G., Forbes J. E., Gould N. L., 1964, ApJ, 139, 306
    • Herwig F., Bloecker T., Schoenberner D., El Eid M., 1997, A&A, 324, L81
    • Hubbard W. B., Lampe M., 1969, ApJS, 18, 297 Huebener W. F., Merts A. L., Magee N. H., Argo M. F., 1964, Los Alamos Laboratory Report, LA-6760-M Iben, Jr. I., 1975, ApJ, 196, 525
    • Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943 Imbriani G. et al., 2004, A&A, 420, 625 Imbriani G., Limongi M., Gialanella L., Terrasi F., Straniero O., Chie A., 2001, ApJ, 558, 903 Jaeger M., Kunz R., Mayer A., Hammer J. W., Staudt G., Kratz K. L., Pfei er B., 2001, Physical Review Letters, 87, 202501
    • Jones S. et al., 2013, ApJ, 772, 150
    • Kaeppeler F. et al., 1994, ApJ, 437, 396 Kawata D., Gibson B. K., 2003, MNRAS, 340, 908 Klay N., Kappeler F., 1988, Physical Reviews C, 38, 295 Kobayashi C., Karakas A. I., Umeda H., 2011, MNRAS, 414, 3231
    • Kunz R., Fey M., Jaeger M., Mayer A., Hammer J. W., Staudt G., Harissopulos S., Paradellis T., 2002, ApJ, 567, 643
    • Langer N., Arcoragi J.-P., Arnould M., 1989, A&A, 210, 187
    • Limongi M., Chie A., 2012, ApJS, 199, 38 Lodders K., 2003, ApJ, 591, 1220
    • Martins F., Palacios A., 2013, A&A, 560, A16 Maund J. R. et al., 2011, ApJL, 739, L37 Mukhamedzhanov A. M. et al., 2003, Physical Reviews C, 67, 065804
    • Muller B., Janka H.-T., Marek A., 2012, ApJ, 756, 84 Nakamura K., Takiwaki T., Kuroda T., Kotake K., 2014, ArXiv e-prints
    • Nieuwenhuijzen H., de Jager C., 1990, A&A, 231, 134 Nomoto K., 1984, ApJ, 277, 791
    • O'Connor E., Ott C. D., 2011, ApJ, 730, 70 Paxton B., Bildsten L., Dotter A., Herwig F., Lesa re P., Timmes F., 2011, ApJS, 192, 3
    • Paxton B. et al., 2013, ApJS, 208, 4 Pignatari M., Gallino R., Heil M., Wiescher M., Kappeler F., Herwig F., Bisterzo S., 2010, ApJ, 710, 1557 Pignatari M. et al., 2013a, ArXiv e-prints |, 2013b, ApJ, 762, 31
    • Poelarends A. J. T., Herwig F., Langer N., Heger A., 2008, ApJ, 675, 614
    • Potekhin A. Y., Chabrier G., 2010, Contributions to Plasma Physics, 50, 82
    • Prantzos N., Hashimoto M., Nomoto K., 1990, A&A, 234, 211
    • Pumo M. L., Contino G., Bonanno A., Zappala R. A., 2010, A&A, 524, A45
    • Raiteri C. M., Busso M., Picchio G., Gallino R., Pulone L., 1991, ApJ, 367, 228
    • Raiteri C. M., Gallino R., Busso M., Neuberger D., Kaeppeler F., 1993, ApJ, 419, 207
    • Rauscher T., Heger A., Ho man R. D., Woosley S. E., 2002, ApJ, 576, 323
    • Rauscher T., Thielemann F.-K., 2000, Atomic Data and Nuclear Data Tables, 75, 1
    • Rogers F. J., Nayfonov A., 2002, ApJ, 576, 1064 Sampson D. H., 1959, ApJ, 129, 734 Saumon D., Chabrier G., van Horn H. M., 1995, ApJS, 99, 713
    • Schaller G., Schaerer D., Meynet G., Maeder A., 1992, A&AS, 96, 269
    • Smartt S. J., 2009, ARAsA, 47, 63
    • Spruit H. C., 2002, A&A, 381, 923
    • Sukhbold T., Woosley S., 2013, ArXiv e-prints The L.-S., El Eid M. F., Meyer B. S., 2007, ApJ, 655, 1058 Timmes F. X., Swesty F. D., 2000, ApJS, 126, 501 Tur C., Heger A., Austin S. M., 2007, ApJ, 671, 821 |, 2009, ApJ, 702, 1068
    • Ugliano M., Janka H.-T., Marek A., Arcones A., 2012, ApJ, 757, 69
    • Vink J. S., de Koter A., Lamers H. J. G. L. M., 2001, A&A, 369, 574
    • Weaver T. A., Zimmerman G. B., Woosley S. E., 1978, ApJ, 225, 1021
    • West C., Heger A., Austin S. M., 2013, ApJ, 769, 2 Woosley S., Heger A., Weaver T., 2002, Rev.Mod.Phys., 74, 1015
    • Woosley S. E., Heger A., 2007, Physics Reports, 442, 269 Woosley S. E. et al., 2004, ApJS, 151, 75 Woosley S. E., Ho man R. D., 1992, ApJ, 395, 202 Young P. A., Arnett D., 2005, ApJ, 618, 908 Yusof N. et al., 2013, MNRAS, 433, 1114
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • SNSF | Stroke survival, recurrenc...
  • EC | SHYNE
  • ARC | Cosmic explosions and the o...

Cite this article