LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Novak, L.; Ambaum, M. H. P.; Tailleux, R. (2017)
Publisher: Royal Meteorological Society
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1002/qj.3014
A predator-prey relationship between storm track intensity and growth rate is revealed in reanalysis data for the North Atlantic and North Pacific, as well as in an idealised global circulation model with a zonally asymmetric heating dipole. Averaging in the phase space of these two quantities reveals that both quantities oscillate on approximately monthly timescales. These oscillations occur due to quasi-periodic bursts in storm track activity that reduce excess baroclinicity and bring the flow back towards a state that is marginally stable to those bursts. Many detailed properties of these oscillations are reproduced well by a two-dimensional dynamical system, especially in respect of the North Atlantic storm track which is more zonally constrained compared to the North Pacific. It is predicted and observed that on average stronger storm events occur less frequently but grow on a shorter timescale. The results suggest that nonlinearly oscillating behaviour around a state of baroclinic neutrality is a general feature of localised storm tracks, and they offer a new perspective on the study of baroclinic instability.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ambaum MHP, Novak L. 2014. A nonlinear oscillator describing storm track variability. Q. J. R. Meteorol. Soc. 140: 2680-2684.
    • Barnes EA, Screen JA. 2015. The impact of Arctic warming on the midlatitude jet stream: Can it? Has it? Will it? WIREs Clim. Change 6: 277-286, doi: 10.1002/wcc.337.
    • Barry L, Craig GC, Thuburn J. 2002. Poleward heat transport by the atmospheric heat engine. Nature 415: 774-777.
    • Brayshaw DJ, Hoskins BJ, Blackburn M. 2011. The basic ingredients of the North Atlantic storm track, Part II: Sea surface temperatures. J. Atmos. Sci. 68: 1784 - 1805.
    • Chang EKM, Orlanski I. 1993. Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci. 50: 999 - 1015.
    • Charney JG. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4: 136 - 162.
    • Eady ET. 1949. Long waves and cyclone waves. Tellus 1: 33 - 52.
    • Fleming RJ. 2014. Explosive baroclinic instability. J. Atmos. Sci. 71: 2155 - 2168.
    • Fraedrich K, Kirk E, Lunkeit F. 1998. 'PUMA: Portable University model of the atmosphere', Technical report 16. Deutsches Klimarechenzentrum: Hamburg, Germany.
    • Fraedrich K, Kirk E, Luksch U, Lunkeit F. 2005. The Portable University Model of the Atmosphere (PUMA): Storm track dynamics and low frequency variability. Meteorol. Z. 14: 735 - 745.
    • Frisius T, Lunkeit F, Fraedrich K, James IN. 1998. Storm-track organization and variability in a simplified atmospheric global circulation model. Q. J. R. Meteorol. Soc. 124: 1019 - 1043.
    • Griffies SM. 1998. The Gent - McWilliams skew flux. J. Phys. Oceanogr. 28: 831 - 841.
    • Hart JE. 1972. A laboratory study of baroclinic instability. Geophys. Fluid Dyn. 3: 181 - 209.
    • Held IM, Suarez MJ. 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation model. Bull. Am. Meteorol. Soc. 75: 1825 - 1830.
    • Hide R. 1958. An experimental study of thermal convection in a rotating liquid. Phil. Trans. R. Soc. London, Ser. A 250: 442 - 478.
    • Hirsch MW, Smale S. 1974. Differential Equations, Dynamical Systems and Linear Algebra. Elsevier Academic Press: London.
    • Hoskins BJ, Simmons AJ. 1975. A multi-layer spectral model and the semiimplicit method. Q. J. R. Meteorol. Soc. 101: 637 - 655.
    • Hoskins BJ, Valdes PJ. 1990. On the existence of storm-tracks. J. Atmos. Sci. 47: 1854 - 1864.
    • James IN. 1994. Introduction to Circulating Atmospheres. Cambridge University Press: Cambridge, UK.
    • James IN, Gray LJ. 1986. Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Q. J. R. Meteorol. Soc. 112: 1231 - 1250.
    • Jansen M, Ferrari R. 2013. Equilibration of an atmosphere by adiabatic eddy fluxes. J. Atmos. Sci. 70: 2948 - 2962.
    • Landau LD, Lifshitz EM. 1976. Mechanics, Vol. 1 (3rd edn). Elsevier/Butterworth-Heinemann: Oxford, UK.
    • Larichev VD, Held IM. 1995. Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 25: 2285 - 2297.
    • Lorenz EN. 1963a. Deterministic nonperiodic flow. J. Atmos. Sci. 20: 130 - 141.
    • Lorenz EN. 1963b. The mechanics of vacillation. J. Atmos. Sci. 20: 448 - 464.
    • Lorenz EN. 1984. Irregularity: A fundamental property of the atmosphere. Tellus 36A: 98 - 110.
    • Messori G, Czaja A. 2013. On the sporadic nature of meridional heat transport by transient eddies. Q. J. R. Meteorol. Soc. 139: 999 - 1008.
    • Nakamura H, Sampe T. 2002. Trapping of synoptic-scale disturbances into the North Pacific subtropical jet core in midwinter. Geophys. Res. Lett. 29: 8-1 - 8-4. doi: 10.1029/2002GL015535.
    • Namias J. 1950. The index cycle and its role in the general circulation. J. Meteorol. 7: 130 - 139.
    • Novak L, Ambaum MHP, Tailleux R. 2015. The lifecycle of the North Atlantic storm track. J. Atmos. Sci. 72: 821 - 833.
    • Oort AH. 1964. On estimates of the atmospheric energy cycle. Mon. Weather Rev. 92: 483 - 493.
    • Orlanski I, Katzfey J. 1991. The life cycle of a cyclone wave in the Southern Hemisphere, Part I: Eddy energy budget. J. Atmos. Sci. 48: 1972 - 1998.
    • Pedlosky J. 1970. Finite-amplitude baroclinic waves. J. Atmos. Sci. 27: 15 - 30.
    • Pedlosky J. 1982. Finite-amplitude baroclinic waves at minimum critical shear. J. Atmos. Sci. 39: 555 - 562.
    • Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U. 2009. Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim. Dyn. 32: 711 - 737.
    • Randel WJ, Stanford JL. 1985. An observational study of medium-scale wave dynamics in the Southern Hemisphere summer. Part 1: Wave structure and energetics. J. Atmos. Sci. 42: 1172 - 1188.
    • Schneider T, Walker CC. 2006. Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy - eddy interactions. J. Atmos. Sci. 63: 1569 - 1586.
    • Stone PH. 1978. Baroclinic adjustment. J. Atmos. Sci. 35: 561 - 571.
    • Swanson KL, Pierrehumbert RT. 1997. Lower-tropospheric heat transport in the Pacific storm track. J. Atmos. Sci. 54: 1533 - 1543.
    • Thompson PD. 1987. Large-scale dynamical response to differential heating: Statistical equilibrium states and amplitude vacillation. J. Atmos. Sci. 44: 1237 - 1248.
    • Thompson PD. 1988. Period and decay rate of amplitude vacillations in a low-order general circulation model. J. Atmos. Sci. 45: 1279 - 1282.
    • Thompson DWJ, Li Y. 2015. Baroclinic and barotropic annular variability in the Northern Hemisphere. J. Atmos. Sci. 72: 1117 - 1136.
    • Thompson DWJ, Woodworth JD. 2014. Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci. 71: 1480 - 1493.
    • Uppala SM, Ka˚llberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Ho´ lm EV, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J. 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131: 2961 - 3012, doi: 10.1256/qj.04.176.
    • van Veen L. 2003. Baroclinic flow and the Lorenz-84 model. Int. J. Bifurcation Chaos 13: 2117 - 2139.
    • Zurita-Gotor P. 2008. The sensitivity of the isentropic slope in a primitive equation dry model. J. Atmos. Sci. 65: 43 - 65.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article