LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McHale, G; Newton, MI (2002)
Publisher: Elsevier Science
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
The relationship between the edge velocity, vE, and the dynamic contact angle, #, for the spreading of a small spherical cap type droplet on chemically and geometrically heterogeneous surfaces is examined using Frenkel's method. In this method, the change in surface free energy is equated to the viscous dissipation caused by Poiseuille flow inside the spherical cap. To describe dynamic wetting of a surface that is heterogeneous due to small variations in the local surface geometry of the solid, we introduce a simple Wenzel type correction for the ratio of the actual to geometric surface areas, r. The rate of change of surface free energy is then (2izr0)yLy{Q,osd-rr)VE where r0 is the drop base radius, I={y^v- "^L)I%V and the %'s are the interfacial tensions. For partial wetting, I=cos&e where 6e is the equilibrium contact angle and when the viscous dissipation vanishes, Wenzel's relationship linking the equilibrium contact angle on a rough surface to that on a smooth surface is obtained.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article