LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lord, Alex M; Ramasse, Quentin M; Kepaptsoglou, Despoina M; Evans, Jonathan E; Davies, Philip R; Ward, Michael B; Wilks, Steve P (2017)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD
Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal–nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal–support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au–nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) No, Y.-S.; Gao, R.; Mankin, M. N.; Day, R. W.; Park, H.-G.; Lieber, C. M. Nano Lett. 2016, 16, 4713−4719.
    • (2) Webb, J. L.; Knutsson, J.; Hjort, M.; Ghalamestani, S. G.; Dick, K.
    • A.; Timm, R.; Mikkelsen, A. Nano Lett. 2015, 15, 4865−4875.
    • (3) Kempa, T. J.; Kim, S.-K.; Day, R. W.; Park, H.-G.; Nocera, D. G.; Lieber, C. M. J. Am. Chem. Soc. 2013, 135, 18354−18357.
    • (4) Liu, Q.; Zou, R.; Wu, J.; Xu, K.; Lu, A.; Bando, Y.; Golberg, D.; Hu, J. Nano Lett. 2015, 15, 2809−2816.
    • (5) Fauske, V. T.; Huh, J.; Divitini, G.; Dheeraj, D. L.; Munshi, A. M.; Ducati, C.; Weman, H.; Fimland, B.-O.; van Helvoort, A. T. J. Nano Lett. 2016, 16, 3051−3057.
    • (6) Alam, S. B.; Panciera, F.; Hansen, O.; Mølhave, K.; Ross, F. M.
    • Nano Lett. 2015, 15, 6535−6541.
    • (7) Lord, A. M.; Maffeis, T. G.; Kryvchenkova, O.; Cobley, R.; Kalna, K.; Kepaptsoglou, D. M. D.; Ramasse, Q. M.; Walton, A.; Ward, M. B.; Koeble, J.; Wilks, S. P. Nano Lett. 2015, 15, 4248−4254.
    • (8) Qin, W.; Hou, J.; Bonnell, D. A. Nano Lett. 2015, 15, 211−217.
    • (9) Yengui, M.; Riedel, D. J. Phys. Chem. C 2015, 119, 22700−22708.
    • (10) Rhoderick, E. H.; Williams, R. H. Metal-Semiconductor contacts; Clarendon Press: Oxford, UK, 1988.
    • (11) Suyatin, D. B.; Jain, V.; Nebol'sin, V. a; Tragardh, J.; Messing, M. E.; Wagner, J. B.; Persson, O.; Timm, R.; Mikkelsen, a; Maximov, I.; Samuelson, L.; Pettersson, H. Nat. Commun. 2014, 5, 3221.
    • (12) Leónard, F.; Talin, A.; Swartzentruber, B.; Picraux, S. Phys. Rev.
    • Lett. 2009, 102, 106805.
    • (13) Hui, H. Y.; Filler, M. A. Nano Lett. 2015, 15, 6939−6945.
    • (14) Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; Zakharov, D. N.; Ross, F. M.; Stach, E. A. Nano Lett. 2015, 15, 8211−8216.
    • (15) Fu, K. K.; Wang, Z.; Dai, J.; Carter, M.; Hu, L. Chem. Mater.
    • (16) Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H.-J. Adv. Funct. Mater. 2002, 12, 323−331.
    • (17) Cobley, R. J.; Brown, R. a.; Barnett, C. J.; Maffeis, T. G. G.; Penny, M. W. Appl. Phys. Lett. 2013, 102, 023111.
    • (18) Lord, A. M.; Ward, M. B.; Evans, J. E.; Davies, P. R.; Smith, N.
    • A.; Maffeis, T. G.; Wilks, S. P. J. Phys. Chem. C 2014, 118, 21177− 21184.
    • (19) Smith, N. A.; Lord, A. M.; Evans, J. E.; Barnett, C. J.; Cobley, R.
    • J.; Wilks, S. P. Semicond. Sci. Technol. 2015, 30, 065011.
    • (20) Nelson, C. T.; Gao, P.; Jokisaari, J. R.; Heikes, C.; Adamo, C.; Melville, A.; Baek, S.-H.; Folkman, C. M.; Winchester, B.; Gu, Y.; Liu, Y.; Zhang, K.; Wang, E.; Li, J.; Chen, L.-Q.; Eom, C.-B.; Schlom, D. G.; Pan, X. Science 2011, 334, 968−971.
    • (21) Gao, P.; Nelson, C. T.; Jokisaari, J. R.; Baek, S.-H.; Bark, C. W.; Zhang, Y.; Wang, E.; Schlom, D. G.; Eom, C.-B.; Pan, X. Nat. Commun.
    • (22) Gao, P.; Nelson, C. T.; Jokisaari, J. R.; Zhang, Y.; Baek, S.-H.; Bark, C. W.; Wang, E.; Liu, Y.; Li, J.; Eom, C.-B.; Pan, X. Adv. Mater.
    • (23) Wang, L.; Zheng, K.; Zhang, Z.; Han, X. Nano Lett. 2011, 11, 2382−2385.
    • (24) Gan, Z.; Perea, D. E.; Yoo, J.; He, Y.; Colby, R. J.; Barker, J. E.; Gu, M.; Mao, S. X.; Wang, C.; Picraux, S. T.; Smith, D. J.; McCartney, M. R. J. Appl. Phys. 2016, 120, 104301.
    • (25) Lord, A. M.; Walton, A. S.; Maffeis, T. G.; Ward, M. B.; Davies, P.; Wilks, S. P. Nanotechnology 2014, 25, 425706.
    • (26) Hartel, P.; Rose, H.; Dinges, C. Ultramicroscopy 1996, 63, 93− 114.
    • (27) Lord, A. M.; Maffeis, T. G.; Walton, A. S.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Ward, M. B.; Köble, J.; Wilks, S. P. Nanotechnology 2013, 24, 435706.
    • (28) Liu, X.; Liu, M. H.; Luo, Y. C.; Mou, C. Y.; Lin, S. D.; Cheng, H.; Chen, J. M.; Lee, J. F.; Lin, T. S. J. Am. Chem. Soc. 2012, 134, 10251−10258.
    • (29) Zhang, S.; Plessow, P. N.; Willis, J. J.; Dai, S.; Xu, M.; Graham, G. W.; Cargnello, M.; Abild-Pedersen, F.; Pan, X. Nano Lett. 2016, 16, 4528−4534.
    • (30) Van Benthem, K.; Lupini, A. R.; Oxley, M. P.; Findlay, S. D.; Allen, L. J.; Pennycook, S. J. Ultramicroscopy 2006, 106, 1062−1068.
    • (31) Mosbacker, H. L.; Zgrabik, C.; Hetzer, M. J.; Swain, A.; Look, D.
    • (32) Brillson, L. J.; Mosbacker, H. L.; Hetzer, M. J.; Strzhemechny, Y.; Jessen, G. H.; Look, D. C.; Cantwell, G.; Zhang, J.; Song, J. J. Appl.
    • Phys. Lett. 2007, 90, 102116.
    • (33) Wang, Z.; Xue, J.; Han, D.; Gu, F. ACS Appl. Mater. Interfaces 2015, 7, 308−317.
    • (34) Moormann, H.; Kohl, D.; Heiland, G. Surf. Sci. 1980, 100, 302− 314.
    • (35) Li, H.; Bredas, J. L. Adv. Mater. 2016, 28, 3928−3936.
    • (36) Tung, R.; Levi, A.; Sullivan, J.; Schrey, F. Phys. Rev. Lett. 1991, 66, 72−75.
    • (37) Zhou, J.; Xu, N. S.; Wang, Z. L. Adv. Mater. 2006, 18, 2432− 2435.
    • (38) Lord, A. M.; Maffeis, T. G.; Allen, M. W.; Morgan, D.; Davies, P.
    • (39) Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S.-J.; Morkoc, H. J. Appl. Phys. 2005, 98, 41301.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article