Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Alicia, Gressent; Sauvage, Bastien; Danielle, Cariolle; Evans, Mathew John; Leriche, Maude; Mari, Celine; Thouret, Valerie (2015)
Languages: English
Types: Article
For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM) to parameterize the effects of the non-linear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx) in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx-O3 chemical interactions and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the DSMACC chemical box model, simple plume dispersion simulations and the mesoscale 3-D Meso-NH model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions at large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies NOx and O3 decrease at large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over Central Africa in July) and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July) are derived. The calculated variability of NOx and O3 mixing ratios around the mean value according to the known uncertainties on the parameter estimates is maximum over continental tropical regions with ΔNOx [−33.1; +29.7] ppt and ΔO3 [−1.56; +2.16] ppb, in January, and ΔNOx [−14.3; +21] ppt and ΔO3 [−1.18; +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows (i) to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions at the large scale and (ii) focus on other improvements to reduce remaining uncertainties from processes related to NOx chemistry in CTM.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 15, 34091-34147, 2015 D i s c u s s i
    • (R10) n o P a p e r
    • 15, 34091-34147, 2015 Gregory, D., Morcrette, J.-J., Jakob, C., Beljaars, A. C. M., and Stockdale, T.: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System, Q. J. Roy. Meteor. Soc., 126, 1685-1710, 2000. 34097 Grewe, V.: Impact of climate variability on tropospheric ozone, Sci. Total Environ., 374, 167-
    • 5 181, 2007. 34093 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. | Model Dev., 5, 1471-1492, doi:10.5194/gmd-5-1471-2012, 2012. 34096
    • 10 Hauglustaine, D., Emmons, L., Newchurch, M., Brasseur, G., Takao, T., Matsubara, K., Johnson, J., Ridley, B., Stith, J., and Dye, J.: On the role of lightning NOx in the formation of tropospheric ozone plumes: a global model perspective, J. Atmos. Chem., 38, 277-294, 2001. 34093 Hauglustaine, D. A., Granier, C., and Brasseur, G. P.: Impact of present aircraft emissions of
    • 15 nitrogen oxides on troposheric ozone and climate forcing, Geophys. Res. Lett., 21, 2031- 2034, 1994. 34093 Hudman, R.C., Jacob, D. J., Turquety, S., Leibensperger, E. M., Murray, L. T., Wu, S., Gilliland, | A. B., Avery, M., Bertram, T. H., Brune, W., Coben, R. C., Dibb, J. E., Flocke, F. M., Fried, A., Holloway, J., Neumann, J. A., Orville, R., Perning, A., Ren, X., Sachse, G. W., Singh,
    • 20 H. B., Swanson, A., and Wooldridge, P. J.: Surface and lightning sources of nitrogen oxides over the United States: magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112, D12S05, doi:10.1029/2006JD007912, 2007. 34093, 34094 Huntrieser, H., Schlager, H., Feigl, C., and Höller, H.: Transport and production of NOx in electrified thunderstorms: survey of previous studies and new observations at midlatitudes, J.
    • 25 Geophys. Res., 103, 28247-28264, 1998. 34110 Huntrieser, H., Feigl, C., Schlager, H., Schröder, F., Gerbig, C., and van Velthoven, P.: Airborne | measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment, J. Geophys. Res., 107, 4113, doi:10.1029/2000JD000209, 2002. 34101, 34110, 34112
    • 30 Huszar, P., Cariolle, D., Paoli, R., Halenka, T., Belda, M., Schlager, H., Miksovsky, J., and Pisoft, P.: Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization, Atmos. Chem. Phys., 10, 6645-6660, doi:10.5194/acp-10-6645-2010, 2010. 34094, 34098 D Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. i s Chem. Phys., 7, 3823-3907, doi:10.5194/acp-7-3823-2007, 2007. 34093 cu Stith, J., Dye, J., Ridley, B., Laroche, P., Defer, E., Hübler, G., Zerr, R., and Venticinque, M.: NO iss signatures from lightning flashes, J. Geophys. Res., 104, 16081-16089, 1999. 34110 on
    • 5 Stockwell, D. Z., Giannakopoulos, C., Plantevin, P. H., Carver, G. D., Chipperfield, M. P., aP Law, K. S., Pyle, J. A., Shallcross, D. E., and Wang, K. Y.: Modelling NOx from lightning pe and its impact on global chemical fields, Atmos. Environ., 33, 4477-4493, 1999. 34093 r Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y., Tang, Y., and Carmichael, G. R.: | Revisting China's CO emissions after the Transport and Chemical evolution over the Pacific D
    • 10 (GTeRoApChyEs-.PR)emsi.s,s1i1o1n,: Dsy1n4t3h0e6s,isdooif:1in0v.1e0n2to9r/i2e0s0,6aJtmD0o0sp7h1e1r8i,c2m00o6d.el3in4g0,9a6nd observations, J. iscsu Tost, H., Jöckel, P., and Lelieveld, J.: Lightning and convection parameterisations - uncertain- iso ties in global modelling, Atmos. Chem. Phys., 7, 4553-4568, doi:10.5194/acp-7-4553-2007, n 2007. 34093 aP
    • 15 Trier, S. B. and Sharman, R. D.: Convection-permitting simulations of the environment support- rep ing widespread turbulence within the upper-level outflow of a mesoscale convective system, American Meteorological Society, 137, 1972-1990, 2008. 34107 | Tulet, P., Crassier, V., Solmon, F., Guedalia, D., and Rosset, R.: Description of the D mesoscale nonhydrostatic chemistry model and application to a transboundary pollution ics
    • 20 edpoii:s1o0d.e10b2e9t/w20e0e0nJnDo0r0th0e3r0n1,F2ra0n0c3e. 3a4n0d97southern England, J. Geophys. Res., 108, 4021, issuo Tulet, P., Grini, A., Griffin, R. J., and Petitcol, S.: ORILAM-SOA: A compitationnaly efficient nP model for predicting secondary organic aerosols in three-dimensional atmospheric models, pa J. Geophys. Res., 111, D23208, doi:10.1029/2006JD007152, 2006. 34097 re
    • 25 Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous | aerosols and deposited black carbon in the Arctic in winter-spring: implications for radia- D tive forcing, Atmos. Chem. Phys., 11, 12453-12473, doi:10.5194/acp-11-12453-2011, 2011. ics 34096 ssu
    • 30 Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O3-NOx-hydrocarbon ion chemistry - 1. Model formulation, J. Geophys. Res., 103, 10713-10725, 1998. 34096 P Weiss, S. A., MacGorman, D. R., and Calhoun, K. M.: Lightning in the anvils of supercell thun- ap derstorms, Mon. Weather Rev., 140, 2064-2079, 2012. 34093 re Wennberg, P. O., Hanisco, T. F., Jaeglé, L., Jacob, D. J., Hintsa, E. J., Lanzendorf, E. J., Anderson, J. G., Gao, R.-S., Keim, E. R., Donnelly, S. G., Del Negro, L. A., Fahey, D. W., McKeen, S. A., Salawitch, R. J., Webster, C. R., May, R. D., Herman, R. L., Proffitt, M. H., Margitan, J. J., Atlas, E. L., Schauffer, S. M., Flocke, F., McElroy, C. T., and Bui, T. P.: Hydrogen radicals,
    • 5 nitrogen radicals and the production of O3 in the upper troposphere, Science, 279, 49-53, doi:10.1126/science.279.5347.49, 1998. 34121 Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regionalscale numerical models, Atmos. Environ., 23, 1293-1304, 1989. 34096 WMO: Scientific Assessment of Ozone Depletion: 1998, Tech. rep., World Meteorological Or-
    • 10 ganization, Geneva, Switzerland, 1999. 34093 Yevich, R. and Logan, J. A.: An assessment of biofuel use and burning of agricultural waste in the developing world, Global Biogeochem. Cy., 17, 1095, doi:10.1029/2002GB001952, 2003. 34096 Yienger, J. J. and Levy, H.: Empirical model of global soil-biogenic NOx emissions, J. Geophys.
    • 15 Res., 100, 11447-11464, 1995. 34096 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, doi:10.5194/acp-9-5131-2009, 2009. 34096
    • 20 Zhang, R., Tie, X., and Bond, D. W.: Impacts of anthropogenic and natural NOx sources over the U. S. on tropospheric chemistry, P. Natl. Acad. Sci. USA, 100, 1505-1509, 2003. 34093
    • 80oS
    • 180oW 120oW 60oW
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article