Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Howe, J. N. W.; Piotrowski, A. M.; Noble, T. L.; Mulitza, S.; Chiessi, C. M.; Bayon, G.
Publisher: Nature Publishing Group
Languages: English
Types: Article
Subjects: sub-01, Article
Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric $CO_{2}$. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial $\delta^{13}C$ values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. Sample material was provided by the Godwin Laboratory for Paleoclimate Research at the University of Cambridge, the International Ocean Discovery Program, the GeoB Core Repository at the MARUM – Center for Marine Environmental Sciences, University of Bremen and Petrobras. Jo Kerr and Aurora Elmore are thanked for providing additional samples. The data reported in this paper are listed in supplementary information and archived in Pangaea (www.pangaea.de). Thiago Pereira dos Santos is thanked for providing the unpublished age model data for GL1090; Jo Clegg and Vicky Rennie are thanked for technical support and Natalie Roberts for helpful discussions. Radiocarbon analyses were supported by NERC radiocarbon grant 1752.1013 and Nd isotope analyses by NERC grant NERC NE/K005235/1 and NERC NE/F006047/1 to AMP. JNWH was supported by a Rutherford Memorial Scholarship. SM was funded through the DFG Research Center/Cluster of Excellence “The Ocean in the Earth System”. CMC acknowledges financial support from FAPESP (Grant 2012/17517-3). This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Broecker, W. S. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11, 151-197 (1982).
    • 2. Denton, G. H. et al. The last glacial termination. Science 328, 1652-1656 (2010).
    • 3. Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, 66-69 (2007).
    • 4. Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of d13C of SCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).
    • 5. Marchal, O. & Curry, W. B. On the abyssal circulation in the glacial Atlantic. J. Phys. Oceanogr. 38, 2014-2037 (2008).
    • 6. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753-8758 (2014).
    • 7. Negre, C. et al. Reversed flow of Atlantic deep water during the Last Glacial Maximum. Nature 468, 84-88 (2010).
    • 8. Gebbie, G. How much did Glacial North Atlantic Water shoal? Paleoceanography 29, 190-209 (2014).
    • 9. Weber, S. L. et al. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim. Past 3, 51-64 (2007).
    • 10. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47-55 (2010).
    • 11. Marinov, I. et al. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Global Biogeochem. Cycles 22, GB3007 (2008).
    • 12. Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616-619 (2014).
    • 13. Hain, M. P., Sigman, D. M. & Haug, G. H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: Diagnosis and synthesis in a geochemical box model. Global Biogeochem. Cycles 24, GB4023 (2010).
    • 14. Frank, M. Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev. Geophys. 40, doi:10.1029/2000RG000094 (2002).
    • 15. Piepgras, D. J. & Wasserburg, G. J. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations. Geochim. Cosmochim. Acta 51, 1257-1271 (1987).
    • 16. Stichel, T., Frank, M., Rickli, J. & Haley, B. A. The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean. Earth Planet. Sci. Lett. 317-318, 282-294 (2012).
    • 17. Amakawa, H., Sasaki, K. & Ebihara, M. Nd isotopic composition in the central North Pacific. Geochim. Cosmochim. Acta 73, 4705-4719 (2009).
    • 18. Roberts, N. L., Piotrowski, A. M., McManus, J. F. & Keigwin, L. D. Synchronous deglacial overturning and water mass source changes. Science 327, 75-78 (2010).
    • 19. Elmore, A. C., Piotrowski, A. M., Wright, J. D. & Scrivner, A. E. Testing the extraction of past seawater Nd isotopic composition from North Atlantic deep sea sediments and foraminifera. Geochem. Geophys. Geosyst. 12, Q09008 (2011).
    • 20. Wilson, D. J., Piotrowski, A. M., Galy, A. & Clegg, J. A. Reactivity of neodymium carriers in deep sea sediments: implications for boundary exchange and paleoceanography. Geochim. Cosmochim. Acta 109, 197-221 (2013).
    • 21. Foster, G. L., Vance, D. & Prytulak, J. No change in the neodymium isotope composition of deep water exported from the North Atlantic on glacialinterglacial time scales. Geology 35, 37-40 (2007).
    • 22. Schlitzer, R. Ocean Data View. http://odv.awi.de (2016).
    • 23. Blanckenburg, F. V. Tracing past ocean circulation? Science 286, 1862b-1863b (1999).
    • 24. Rutberg, R. L., Hemming, S. R. & Goldstein, S. L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405, 935-938 (2000).
    • 25. Wei, R., Abouchami, W., Zahn, R. & Masque, P. Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multiproxy records. Earth Planet. Sci. Lett. 434, 18-29 (2016).
    • 26. Piotrowski, A. M. et al. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357-358, 289-297 (2012).
    • 27. Wilson, D. J., Piotrowski, A. M., Galy, A. & Banakar, V. K. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles. Paleoceanography 30, PA2707 (2015).
    • 28. Noble, T. L., Piotrowski, A. M. & McCave, I. N. Neodymium isotopic composition of intermediate and deep waters in the glacial southwest Pacific. Earth Planet. Sci. Lett. 384, 27-36 (2013).
    • 29. Vo¨lker, C. & Ko¨hler, P. Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum. Paleoceanography 28, 726-739 (2013).
    • 30. Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 641-673 (1995).
    • 31. Pena, L. D. & Goldstein, S. L. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition. Science 345, 318-322 (2014).
    • 32. Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41, 667-670 (2013).
    • 33. Bo¨hm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73-76 (2015).
    • 34. Elderfield, H., Whitfield, M., Burton, J. D., Bacon, M. P. & Liss, P. S. The oceanic chemistry of the rare-earth elements [and Discussion]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 325, 105-126 (1988).
    • 35. Crocket, K. C., Vance, D., Gutjahr, M., Foster, G. L. & Richards, D. A. Persistent Nordic deep-water overflow to the glacial North Atlantic. Geology 39, 515-518 (2011).
    • 36. Rempfer, J., Stocker, T. F., Joos, F. & Dutay, J.-C. Sensitivity of Nd isotopic composition in seawater to changes in Nd sources and paleoceanographic implications. J. Geophys. Res. 117, C12010 (2012).
    • 37. Skinner, L. C., Waelbroeck, C., Scrivner, A. E. & Fallon, S. J. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl. Acad. Sci. USA 111, 5480-5484 (2014).
    • 38. Yu, J., Elderfield, H. & Piotrowski, A. M. Seawater carbonate ion-d13C systematics and application to glacial-interglacial North Atlantic ocean circulation. Earth Planet. Sci. Lett. 271, 209-220 (2008).
    • 39. Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation. Quat. Sci. Rev. 90, 80-89 (2014).
    • 40. Mackensen, A., Hubberten, H., Bickert, T. & Ftitterer, D. K. The d13C in benthic foraminifera tests of Fontbotia wuellerstorfi (Schwager) relative to the d13C of dissolved inorganic carbon in Southern Ocean deep water: implications for glacial ocean circulation models. Paleoceanography 8, 587-610 (1993).
    • 41. Kroopnick, P. The distribution of 13C of SCO2 in the world oceans. Deep. Sea Res. Part A Oceanogr. Res. Pap. 32, 57-84 (1985).
    • 42. Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochemistry. Geophys. Geosyst. 4, 1-19 (2003).
    • 43. Kohfeld, K. E., Le Que´re´, C., Le, Harrison, S. P. & Anderson, R. F. Role of Marine Biology in Glacial-Interglacial CO2 Cycles. Science 308, 74-78 (2005).
    • 44. Lippold, J. et al. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nat. Geosci. 5, 813-816 (2012).
    • 45. Labeyrie, L. D. et al. Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times. Quat. Sci. Rev. 11, 401-413 (1992).
    • 46. Millo, C., Sarnthein, M., Voelker, A. & Erlenkeuser, H. Variability of the Denmark Strait Overflow during the Last Glacial Maximum. Boreas 35, 50-60 (2006).
    • 47. Dokken, T. & Jansen, E. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401, 458-461 (1999).
    • 48. Kwon, E. Y. et al. North Atlantic ventilation of 'southern-sourced' deep water in the glacial ocean. Paleoceanography 27, 1-12 (2012).
    • 49. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834-837 (2004).
    • 50. Chen, A. T. et al. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation. Science 349, 1537-1542 (2015).
    • 51. Metcalf, W. G., Heezen, B. C. & Stalcup, M. C. The sill depth of the MidAtlantic Ridge in the equatorial region. Deep Sea Res. Oceanogr. Abstr. 11, 1-10 (1964).
    • 52. McCartney, M. S., Bennett, S. L. & Woodgate-Jones, M. E. Eastward flow through the Mid-Atlantic Ridge at 11 N and its influence on the abyss of the eastern basin. J. Phys. Oceanogr. 21, 1089-1121 (1991).
    • 53. Roberts, N. L. & Piotrowski, A. M. Radiogenic Nd isotope labeling of the northern NE Atlantic during MIS 2. Earth Planet. Sci. Lett. 423, 125-133 (2015).
    • 54. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279-281 (2000).
    • 55. Jeandel, C. Concentration and isotopic composition of Nd in the South Atlantic Ocean. Earth Planet. Sci. Lett. 117, 581-591 (1993).
    • 56. Huang, K.-F., Oppo, D. W. & Curry, W. B. Decreased influence of Antarctic intermediate water in the tropical Atlantic during North Atlantic cold events. Earth Planet. Sci. Lett. 389, 200-208 (2014).
    • 57. Jonkers, L. et al. Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, Neodymium isotope and benthic d13C records. Earth Planet. Sci. Lett. 419, 14-21 (2015).
    • 58. Gutjahr, M., Frank, M., Stirling, C. H., Keigwin, L. D. & Halliday, A. N. Tracing the Nd isotope evolution of North Atlantic Deep and Intermediate Waters in the western North Atlantic since the Last Glacial Maximum from Blake Ridge sediments. Earth Planet. Sci. Lett. 266, 61-77 (2008).
    • 59. Lang, D. C. et al. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification. Nat. Geosci. 9, 375-379 (2016).
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article