Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Berger, Joel I.
Languages: English
Types: Unknown

Classified by OpenAIRE into

mesheuropmc: otorhinolaryngologic diseases
Tinnitus, often defined as the perception of sound in the absence of an external stimulus, affects millions of people worldwide and, in extreme cases, can be severely debilitating. While certain changes within the auditory system have been linked to tinnitus, the exact underlying causes of the phenomenon have not, as yet, been elucidated. Animal models of tinnitus have considerably furthered understanding of the some of the changes associated with the condition, allowing researchers to examine changes following noise exposure, the most common trigger for tinnitus.This thesis documents the development of an animal model of tinnitus, using the guinea pig to examine neural changes following induction of tinnitus. \ud \ud In the first study, a novel adaptation of a behavioural test was developed, in order to be able to determine whether guinea pigs were experiencing tinnitus following the administration of sodium salicylate, a common inducer of tinnitus in humans. This test relies on a phenomenon known as prepulse inhibition, whereby a startle response can be reduced in amplitude by placing a gap in a low-level, continuous background noise immediately prior to the startling stimulus. The hypothesis for this test is that if the background sound is adjusted to be similar to an animal’s tinnitus (induced artificially following noise exposure or drug administration), the tinnitus percept will fill in the gap and the startle response will not be reduced. The results from this first study indicated that using the Preyer reflex (a flexion of the pinnae in response to a startling stimulus) as this startle measure was more robust in guinea pigs than the commonly-used whole-body startle. Furthermore, transient tinnitus was reliably identified following salicylate administration. \ud \ud Following the development and validation of this test, a study was conducted to determine whether guinea pigs experienced tinnitus following unilateral noise exposure. Neural changes commonly associated with the condition (increases in spontaneous firing rates and changes in auditory brainstem responses) were examined, to determine whether there were any differences between animals that did develop tinnitus following noise exposure and those that did not. Two different methods were applied to the behavioural data to determine which animals were experiencing tinnitus. Regardless of the behavioural criteria used, increased spontaneous firing rates were observed in the inferior colliculus of noise-exposed guinea pigs, in comparison to control animals, but there were no differences between tinnitus and no-tinnitus animals. Conversely, significant reductions in the latency of components of the auditory brainstem response were present only in the tinnitus animals. \ud \ud The final study examined whether the original hypothesis for the behavioural test (that tinnitus is filling in the gap) was valid, or whether there was an alternative explanation for the deficits in behavioural gap detection observed previously, such as changes in the temporal acuity of the auditory system preventing detection of the gap. Recordings were made in the inferior colliculus of noise-exposed animals, separated into tinnitus and no-tinnitus groups according to the behavioural test, as well as unexposed control animals, to determine whether there were changes in the responses of single-units in detecting gaps of varying duration embedded in background noise. While some minor changes were present in no-tinnitus animals, tinnitus animals showed no significant changes in neural gap detection thresholds, demonstrating that changes in temporal acuity cannot account for behavioural gap detection deficits observed following noise exposure. Interestingly, significant shifts in the response types of cells were observed which did appear to relate to tinnitus. The present data indicate that the Preyer reflex gap detection test is appropriate for examining tinnitus in guinea pigs. It also suggests that increases in spontaneous firing rates at the level of the inferior colliculus cannot solely account for tinnitus. Changes in auditory brainstem responses, as well as shifts in response types, do appear to relate to tinnitus and warrant further investigation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2.1 Behavioural setup . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Photo of markers . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Experimental timeline . . . . . . . . . . . . . . . . . . . . . 38 2.4 Speaker arrangement . . . . . . . . . . . . . . . . . . . . . . 39 3.1 Amplitudes over a trial . . . . . . . . . . . . . . . . . . . . . 48 3.2 Raw startle traces . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 PPI for each background condition . . . . . . . . . . . . . . 52 3.4 Sodium salicylate effects . . . . . . . . . . . . . . . . . . . . 54 3.5 Individualised analysis . . . . . . . . . . . . . . . . . . . . . 56 3.6 Changes in amplitude . . . . . . . . . . . . . . . . . . . . . 57 4.1 Example of tinnitus behaviour . . . . . . . . . . . . . . . . . 62 4.2 Objective behavioural assessment of tinnitus . . . . . . . . . 63 4.3 ABR threshold shifts . . . . . . . . . . . . . . . . . . . . . . 65 4.4 ABR example . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5 ABR latency shifts - tinnitus . . . . . . . . . . . . . . . . . . 67 4.6 ABR latency shifts - no-tinnitus . . . . . . . . . . . . . . . . 68 4.7 Spread of SFRs - initial criteria . . . . . . . . . . . . . . . . 70 4.8 Mean SFRs - initial criteria . . . . . . . . . . . . . . . . . . . 71 Abel, M. D. and Levine, R. A. (2004). Muscle contractions and auditory perception in tinnitus patients and nonclinical subjects. Cranio, 22(3), 181-91.
    • Agterberg, M. J., van den Broek, M., and Philippens, I. H. (2010). A less stressful animal model: a conditioned avoidance behaviour task for guineapigs. Lab Anim, 44(3), 206-10.
    • Aitkin, L. M., Webster, W. R., Veale, J. L., and Crosby, D. C. (1975). Inferior colliculus. i. comparison of response properties of neurons in central, pericentral, and external nuclei of adult cat. J Neurophysiol, 38(5), 1196-1207.
    • Anderson, L. A., Malmierca, M. S., Wallace, M. N., and Palmer, A. R. (2006). Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. Eur J Neurosci, 24(2), 491-8.
    • Anderson, L. A., Wallace, M. N., and Palmer, A. R. (2007). Identification of subdivisions in the medial geniculate body of the guinea pig. Hear Res, 228(1-2), 156-67.
    • Armony, J. and LeDoux, J. (2010). Emotional responses to auditory stimuli. In Rees, A., Palmer, A. R., and Moore, D., editors, The Oxford Handbook of Auditory Science: The Auditory Brain, volume 2, book section 19, pages 479-505. Oxford University Press, Oxford, UK.
    • Astl, J., Popelar, J., Kvasnak, E., and Syka, J. (1996). Comparison of response properties of neurons in the inferior colliculus of guinea pigs under different anesthetics. Audiology, 35(6), 335-345.
    • Axelsson, A. and Prasher, D. (2000). Tinnitus induced by occupational and leisure noise. Noise Health, 2(8), 47-54.
    • Axelsson, A. and Sandh, A. (1985). Tinnitus in noise-induced hearing loss. Br J Audiol, 19(4), 271-6.
    • Barsz, K., Ison, J. R., Snell, K. B., and Walton, J. P. (2002). Behavioral and neural measures of auditory temporal acuity in aging humans and mice. Neurobiology of Aging, 23(4), 565-578.
    • Basta, D. and Ernst, A. (2004). Effects of salicylate on spontaneous activity in inferior colliculus brain slices. Neurosci Res, 50(2), 237-43.
    • Bauer, C. A. and Brozoski, T. J. (2001). Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol, 2(1), 54-64.
    • Bauer, C. A., Turner, J. G., Caspary, D. M., Myers, K. S., and Brozoski, T. J. (2008). Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res, 86(11), 2564-78.
    • Baumann, S., Petkov, C., and Griffiths, T. (2013). A unified framework for the organization of the primate auditory cortex. Front Syst Neurosci, 7, 11.
    • Benning, S. D., Patrick, C. J., and Lang, A. R. (2004). Emotional modulation of the post-auricular reflex. Psychophysiology, 41(3), 426-32.
    • Berger, J. I., Coomber, B., Shackleton, T. M., Palmer, A. R., and Wallace, M. N. (2013). A novel behavioural approach to detecting tinnitus in the guinea pig. J Neurosci Methods, 213(2), 188-195.
    • Berzin, F. and Fortinguerra, C. R. H. (1993). Emg study of the anterior, superior and posterior auricular muscles in man. Ann Anat, 175(2), 195-197.
    • Boettcher, F. A. (2002). Presbyacusis and the auditory brainstem response. J Speech Lang Hear Res, 45(6), 1249-61.
    • Bogoch, I., House, R. A., and Kudla, I. (2005). Perceptions about hearing protection and noise-induced hearing loss of attendees of rock concerts. Can J Public Health, 96(1), 69-72.
    • Bohmer, A. (1988). The preyer reflex-an easy estimate of hearing function in guinea pigs. Acta Otolaryngol, 106(5-6), 368-72.
    • Brown, S. and Nicholls, M. (59). Hemispheric asymmetries for the temporal resolution of brief auditory stimuli. Percept Psychophys, 59, 442-447.
    • Brozoski, T., Odintsov, B., and Bauer, C. (2012). Gamma-aminobutyric acid and glutamic acid levels in the auditory pathway of rats with chronic tinnitus: a direct determination using high resolution point-resolved proton magnetic resonance spectroscopy (h-mrs). Front Syst Neurosci, 6, 9.
    • Brozoski, T. J. and Bauer, C. A. (2005). The effect of dorsal cochlear nucleus ablation on tinnitus in rats. Hear Res, 206(1-2), 227-36.
    • Brozoski, T. J., Bauer, C. A., and Caspary, D. M. (2002). Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci, 22(6), 2383-90.
    • Buchwald, J. S. and Huang, C. (1975). Far-field acoustic response: origins in the cat. Science, 189(4200), 382-4.
    • Bullock, D. C., Palmer, A. R., and Rees, A. (1988). Compact and easy-to-use tungsten-in-glass microelectrode manufacturing workstation. Med Biol Eng Comput, 26(6), 669-72.
    • Burns, E. M. (1984). A comparison of variability among measurements of subjective tinnitus and objective stimuli. Audiology, 23(4), 426-40.
    • Cacace, A. T., Cousins, J. P., Parnes, S. M., Semenoff, D., Holmes, T., McFarland, D. J., Davenport, C., Stegbauer, K., and Lovely, T. J. (1999). Cutaneous-evoked tinnitus. i. phenomenology, psychophysics and functional imaging. Audiol Neurootol, 4(5), 247-57.
    • Caspary, D. M., Ling, L., Turner, J. G., and Hughes, L. F. (2008). Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol, 211(Pt 11), 1781-91.
    • Casseday, J. H. and Covey, E. (1996). A neuroethological theory of the operation of the inferior colliculus. Brain Behav Evol, 47(6), 311-36.
    • Casseday, J. H., Fremouw, T., and Covey, E. (2002). The inferior colliculus: A hub for the central auditory system. In Oertel, D., Fay, R. R., and Popper, A. N., editors, Integrative Functions in the Mammalian Auditory Pathway, volume 15 of Springer Handbook of Auditory Research, book section 7, pages 238-318. Springer New York.
    • Cassella, J. V. and Davis, M. (1986). Habituation, prepulse inhibition, fear conditioning, and drug modulation of the acoustically elicited pinna reflex in rats. Behav Neurosci, 100(1), 39-44.
    • Chen, G., Lee, C., Sandridge, S. A., Butler, H. M., Manzoor, N. F., and Kaltenbach, J. A. (2013). Behavioral evidence for possible simultaneous induction of hyperacusis and tinnitus following intense sound exposure. J Assoc Res Otolaryngol, 14(3), 413-24.
    • Chen, G. D. and Jastreboff, P. J. (1995). Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res, 82(2), 158-78.
    • Chen, G.-D., Tanaka, C., and Henderson, D. (2008). Relation between outer hair cell loss and hearing loss in rats exposed to styrene. Hear Res, 243(1-2), 28-34.
    • Chen, T. J., Huang, C. W., Wang, D. C., and Chen, S. S. (2004). Co-induction of growth-associated protein gap-43 and neuronal nitric oxide synthase in the cochlear nucleus following cochleotomy. Exp Brain Res, 158(2), 151-162.
    • Clopton, B. and Winfield, J. (1973). Tonotopic organization in the inferior colliculus of the rat. Brain Res, 56, 355-358.
    • Coad, M. L., Lockwood, A., Salvi, R., and Burkard, R. (2001). Characteristics of patients with gaze-evoked tinnitus. Otol Neurotol, 22(5), 650-4.
    • Dallos, P. and Harris, D. (1978). Properties of auditory-nerve responses in absence of outer hair cells. J Neurophysiol, 41(2), 365-383.
    • Dallos, P., Zheng, J., and Cheatham, M. (2006). Prestin and the cochlear amplifier. J Physiol, 576, 37-42.
    • Dauman, R. and Bouscau-Faure, F. (2005). Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol, 125(5), 503-9.
    • Davis, M., Falls, W. A., Campeau, S., and Kim, M. (1993a). Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res, 58(1-2), 175-98.
    • Davis, M., Falls, W. A., Campeau, S., and Kim, M. (1993b). Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res, 58(1-2), 175-98.
    • Dawson, T. M., Bredt, D. S., Fotuhi, M., Hwang, P. M., and Snyder, S. H. (1991). Nitric oxide synthase and neuronal nadph diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A, 88(17), 7797-801.
    • Dehmel, S., Eisinger, D., and Shore, S. E. (2012a). Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front Syst Neurosci, 6, 42.
    • Dehmel, S., Pradhan, S., Koehler, S., Bledsoe, S., and Shore, S. (2012b). Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus-possible basis for tinnitus-related hyperactivity? J Neurosci, 32(5), 1660-71.
    • Dietrich, S. (2004). Earliest historic reference of 'tinnitus' is controversial. J Laryngol Otol, 118(7), 487-8.
    • Dille, M. F., Konrad-Martin, D., Gallun, F., Helt, W. J., Gordon, J. S., Reavis, K. M., Bratt, G. W., and Fausti, S. A. (2010). Tinnitus onset rates from chemotherapeutic agents and ototoxic antibiotics: results of a large prospective study. J Am Acad Audiol, 21(6), 409-17.
    • Dobie, R. A. (2003). Depression and tinnitus. Otolaryngol Clin North Am, 36(2), 383-8.
    • Dong, S., Mulders, W. H., Rodger, J., Woo, S., and Robertson, D. (2010). Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. Eur J Neurosci, 31(9), 1616-28.
    • Duque, D., Perez-Gonzalez, D., Ayala, Y. A., Palmer, A. R., and Malmierca, M. S. (2012). Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci, 32(49), 17762-74.
    • Efron, R., Yund, E., Nichols, D., and Crandall, P. (1985). An ear asymmetry for gap detection following anterior temporal lobectomy. Neuropsychologia, 23, 43-50.
    • Eggermont, J. J. (1999). Neural correlates of gap detection in three auditory cortical fields in the cat. J Neurophysiol, 81(5), 2570-2581.
    • Eggermont, J. J. (2005). Tinnitus: neurobiological substrates. Drug Discov Today, 10(19), 1283-90.
    • Eggermont, J. J. (2006). Cortical tonotopic map reorganization and its implications for treatment of tinnitus. Acta Otolaryngol Suppl, 126(556), 9-12.
    • Eggermont, J. J. (2007). Correlated neural activity as the driving force for functional changes in auditory cortex. Hear Res, 229(1-2), 69-80.
    • Eggermont, J. J. (2013). Hearing loss, hyperacusis, or tinnitus: what is modeled in animal research? Hear Res, 295, 140-9.
    • Eggermont, J. J. and Kenmochi, M. (1998). Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hear Res, 117(1-2), 149-60.
    • Eggermont, J. J. and Komiya, H. (2000). Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res, 142(1-2), 89-101.
    • Eggermont, J. J. and Roberts, L. E. (2004). The neuroscience of tinnitus. Trends Neurosci, 27(11), 676-82.
    • Ehret, G. (1997). The auditory midbrain, a “shunting-yard” of acoustical information processing. In R, E. G. R., editor, The Central Auditory System, pages 259-316. Oxford: Oxford University Press.
    • Elbert, T., Flor, H., Birbaumer, N., Knecht, S., Hampson, S., Larbig, W., and Taub, E. (1994). Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport, 5(18), 2593-7.
    • Elgoyhen, A. B., Langguth, B., Vanneste, S., and De Ridder, D. (2012). Tinnitus: network pathophysiology-network pharmacology. Front Syst Neurosci, 6, 1.
    • Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudanagunta, S. P., Borland, M. S., and Kilgard, M. P. (2011). Reversing pathological neural activity using targeted plasticity. Nature, 470(7332), 101-U114.
    • Evans, E. F. and Borerwe, T. A. (1982). Ototoxic effects of salicylates on the responses of single cochlear nerve fibres and on cochlear potentials. Br J Audiol, 16(2), 101-8.
    • Ferraro, J. A., Melnick, W., and Gerhardt, K. R. (1981). Effects of prolonged noise exposure in chinchillas with severed middle ear muscles. Am J Otolaryngol, 2(1), 13-8.
    • Fitzgibbons, P. J. and Wightman, F. L. (1982). Gap detection in normal and hearing-impaired listeners. J Acoust Soc Am, 72(3), 761-5.
    • Flanagan, J. (1972). Speech analysis synthesis and perception. Springer-Verlag.
    • Flor, H., Elbert, T., Knecht, S., Wienbruch, C., Pantev, C., Birbaumer, N., Larbig, W., and Taub, E. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375(6531), 482-484.
    • Flor, H., Elbert, T., Muhlnickel, W., Pantev, C., Wienbruch, C., and Taub, E. (1998). Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res, 119(2), 205-212.
    • Folmer, R. L., Martin, W. H., and Shi, Y. (2004). Tinnitus: questions to reveal the cause, answers to provide relief. J Fam Pract, 53(7), 532-40.
    • Fournier, P. and Hebert, S. (2013). Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: Does tinnitus fill in the gap? Hear Res, 295, 16-23.
    • Fridberger, A., Flock, A., Ulfendahl, M., and Flock, B. (1998). Acoustic overstimulation increases outer hair cell ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A, 95(12), 7127-32.
    • Friedman, J. T., Peiffer, A. M., Clark, M. G., Benasich, A. A., and Fitch, R. H. (2004). Age and experience-related improvements in gap detection in the rat. Brain Res Dev Brain Res, 152(2), 83-91.
    • Frisina, R. D. (2010). Aging changes in the central auditory system. The Oxford Handbook of Auditory Science: The Auditory Brain, 2, 418-438.
    • Furman, A. C., Kujawa, S. G., and Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol, 110(3), 577-586.
    • Garrido, M. I., Barnes, G. R., Sahani, M., and Dolan, R. J. (2012). Functional evidence for a dual route to amygdala. Curr Biol, 22(2), 129-134.
    • Gelfand, S. A., Porrazzo, J., and Silman, S. (1988). Aging effects on gap detection thresholds among normal and hearing impaired subjects. J Acoust Soc Am, 83(S1), S75.
    • Gerken, G. (1996). Central tinnitus and lateral inhibition: an auditory brainstem model. Hear Res, 97, 75-83.
    • Gilles, A., De Ridder, D., Van Hal, G., Wouters, K., Kleine Punte, A., and Van de Heyning, P. (2012). Prevalence of leisure noise-induced tinnitus and the attitude toward noise in university students. Otol Neurotol, 33(6), 899-906.
    • Gordon-Salant, S. and Fitzgibbons, P. J. (1993). Temporal factors and speech recognition performance in young and elderly listeners. J Speech Hear Res, 36(6), 1276-85.
    • Gourevitch, B., Doisy, T., Avillac, M., and Edeline, J. M. (2009). Follow-up of latency and threshold shifts of auditory brainstem responses after single and interrupted acoustic trauma in guinea pig. Brain Res, 1304, 66-79.
    • Grillon, C. and Davis, M. (1997). Effects of stress and shock anticipation on prepulse inhibition of the startle reflex. Psychophysiology, 34(5), 511-7.
    • Gu, J. W., Herrmann, B. S., Levine, R. A., and Melcher, J. R. (2012). Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol, 13(6), 819-33.
    • Gunderson, E., Moline, J., and Catalano, P. (1997). Risks of developing noise-induced hearing loss in employees of urban music clubs. Am J Ind Med, 31(1), 75-9.
    • Hackley, S. A. (1993). An evaluation of the automaticity of sensory processing using event-related potentials and brain-stem reflexes. Psychophysiology, 30(5), 415-428.
    • Hackley, S. A., Woldorff, M., and Hillyard, S. A. (1987). Combined use of micro-reflexes and event-related brain potentials as measures of auditory selective attention. Psychophysiology, 24(6), 632-647.
    • Hakuba, N., Koga, K., Gyo, K., Usami, S. I., and Tanaka, K. (2000). Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter glast. J Neurosci, 20(23), 8750-3.
    • Hamann, I., Gleich, O., Klump, G. M., Kittel, M. C., and Strutz, J. (2004). Age-dependent changes of gap detection in the mongolian gerbil (meriones unguiculatus). J Assoc Res Otolaryngol, 5(1), 49-57.
    • Harrington, D., Boyd, L., Mayer, A., Sheltraw, D., Lee, R., Huang, M., and Rao, S. (2004). Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res, 21, 193-205.
    • Harrison, R. V., Aran, J. M., and Erre, J. P. (1981). Ap tuning curves from normal and pathological human and guinea pig cochleas. J Acoust Soc Am, 69(5), 1374-85.
    • Harrison, R. V., Ibrahim, D., and Mount, R. J. (1998). Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Exp Brain Res, 123(4), 449-60.
    • Harrison, R. V. and Palmer, A. R. (1984). Neurone response latency in the inferior colliculus in relation to the auditory brainstem responses (abr) in the guinea pig. Scand Audiol, 13(4), 275-81.
    • Hazell, J. W. and Jastreboff, P. J. (1990). Tinnitus. i: Auditory mechanisms: a model for tinnitus and hearing impairment. J Otolaryngol, 19(1), 1-5.
    • Hebert, S., Canlon, B., Hasson, D., Hanson, L. L. M., Westerlund, H., and Theorell, T. (2012). Tinnitus severity is reduced with reduction of depressive mood - a prospective population study in sweden. PLoS One, 7(5), e37733.
    • Hebert, S., Paiement, P., and Lupien, S. J. (2004). A physiological correlate for the intolerance to both internal and external sounds. Hear Res, 190(1-2), 1-9.
    • Heffner, H. E. and Harrington, I. A. (2002). Tinnitus in hamsters following exposure to intense sound. Hear Res, 170(1-2), 83-95.
    • Heller, M. F. and Bergman, M. (1953). Tinnitus aurium in normally hearing persons. Ann Otol Rhinol Laryngol, 62(1), 73-83.
    • Henderson, D., Bielefeld, E., Lobarinas, E., and Tanaka, C. (2011). Noise-induced hearing loss: Implication for tinnitus. In Moller, A. R., Langguth, B., Ridder, D., and Kleinjung, T., editors, Textbook of Tinnitus, book section 37, pages 301-309. Springer New York.
    • Henry, J. A., Flick, C. L., Gilbert, A., Ellingson, R. M., and Fausti, S. A. (2004). Comparison of manual and computer-automated procedures for tinnitus pitch-matching. J Rehabil Res Dev, 41(2), 121-38.
    • Henry, J. A. and Meikle, M. B. (1999). Pulsed versus continuous tones for evaluating the loudness of tinnitus. J Am Acad Audiol, 10(5), 261-72.
    • Henry, K. S., Kale, S., Scheidt, R. E., and Heinz, M. G. (2011). Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas. Hear Res, 280(1-2), 236-244.
    • Hobson, J., Chisholm, E., and El Refaie, A. (2012). Sound therapy (masking) in the management of tinnitus in adults. Cochrane Database Syst Rev, 11, CD006371.
    • Hodgetts, W. E. and Liu, R. (2006). Can hockey playoffs harm your hearing? CMAJ, 175(12), 1541-2.
    • Hoffman, H. S. and Searle, J. L. (1965). Acoustic variables in the modification of startle reaction in the rat. J Comp Physiol Psychol, 60, 53-8.
    • Hofman, P. M., Van Riswick, J. G., and Van Opstal, A. J. (1998). Relearning sound localization with new ears. Nat Neurosci, 1(5), 417-21.
    • House, J. W. and Brackmann, D. E. (1981). Tinnitus: surgical treatment. Ciba Found Symp, 85, 204-16.
    • Houston, D. K., Johnson, M. A., Nozza, R. J., Gunter, E. W., Shea, K. J., Cutler, G. M., and Edmonds, J. T. (1999). Age-related hearing loss, vitamin b-12, and folate in elderly women. Am J Clin Nutr, 69(3), 564-71.
    • Huang, C. M. and Fex, J. (1986). Tonotopic organization in the inferior colliculus of the rat demonstrated with the 2-deoxyglucose method. Exp Brain Res, 61(3), 506-12.
    • Humphries, C., Liebenthal, E., and Binder, J. R. (2010). Tonotopic organization of human auditory cortex. Neuroimage, 50(3), 1202-11.
    • Irvine, D. R. F., Rajan, R., and Smith, S. (2003). Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus. J Comp Neurol, 467(3), 354-374.
    • Jastreboff, P. J., Brennan, J. F., Coleman, J. K., and Sasaki, C. T. (1988). Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci, 102(6), 811-22.
    • Jero, J., Coling, D. E., and Lalwani, A. K. (2001). The use of preyer's reflex in evaluation of hearing in mice. Acta Otolaryngol, 121(5), 585-9.
    • Kaltenbach, J. A. (2011). Tinnitus: Models and mechanisms. Hear Res, 276(1-2), 52-60.
    • Kaltenbach, J. A. and Afman, C. E. (2000). Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res, 140(1-2), 165-72.
    • Kaltenbach, J. A. and Godfrey, D. A. (2008). Dorsal cochlear nucleus hyperactivity and tinnitus: Are they related? Am J Audiol, 17(2), S148-S161.
    • Kaltenbach, J. A., Rachel, J. D., Mathog, T. A., Zhang, J., Falzarano, P. R., and Lewandowski, M. (2002). Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. J Neurophysiol, 88(2), 699-714.
    • Kaltenbach, J. A., Zacharek, M. A., Zhang, J., and Frederick, S. (2004). Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett, 355(1-2), 121-5.
    • Kaltenbach, J. A., Zhang, J., and Finlayson, P. (2005). Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res, 206(1-2), 200-26.
    • Kamke, M. R., Brown, M., and Irvine, D. R. F. (2003). Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. J Comp Neurol, 459(4), 355-367.
    • Kasai, M., Ono, M., and Ohmori, H. (2012). Distinct neural firing mechanisms to tonal stimuli offset in the inferior colliculus of mice in vivo. Neurosci Res, 73(3), 224-237.
    • Keller, C. H. and Takahashi, T. T. (2000). Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl's inferior colliculus. J Neurophysiol, 84(5), 2638-50.
    • Kelly, J. B., Liscum, A., van Adel, B., and Ito, M. (1998). Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat's inferior colliculus. Hear Res, 116(1-2), 43-54.
    • Koka, K., Jones, H. G., Thornton, J. L., Lupo, J. E., and Tollin, D. J. (2011). Sound pressure transformations by the head and pinnae of the adult chinchilla (chinchilla lanigera). Hear Res, 272(1-2), 135-47.
    • Konig, O., Schaette, R., Kempter, R., and Gross, M. (2006). Course of hearing loss and occurrence of tinnitus. Hear Res, 221(1-2), 59-64.
    • Konishi, T., Hamrick, P. E., and Walsh, P. J. (1978). Ion transport in guinea pig cochlea. i. potassium and sodium transport. Acta Otolaryngol, 86(1-2), 22-34.
    • Kraus, K. S. and Canlon, B. (2012). Neuronal connectivity and interactions between the auditory and limbic systems. effects of noise and tinnitus. Hear Res, 288(1-2), 34-46.
    • Kraus, K. S., Ding, D., Jiang, H., Lobarinas, E., Sun, W., and Salvi, R. J. (2011). Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: Does synaptic plasticity in ventral cochlear nucleus suppress tinnitus? Neuroscience, 194, 309-325.
    • Landgrebe, M., Zeman, F., Koller, M., Eberl, Y., Mohr, M., Reiter, J., Staudinger, S., Hajak, G., and Langguth, B. (2010). The tinnitus research initiative (tri) database: a new approach for delineation of tinnitus subtypes and generation of predictors for treatment outcome. BMC Med Inform Decis Mak, 10, 42.
    • Langers, D. R., de Kleine, E., and van Dijk, P. (2012). Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci, 6, 2.
    • Langers, D. R. and van Dijk, P. (2012). Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex, 22(9), 2024-38.
    • Langguth, B., Kleinjung, T., and Landgrebe, M. (2011). Tinnitus: the complexity of standardization. Eval Health Prof, 34(4), 429-33.
    • Langguth, B., Salvi, R., and Elgoyhen, A. B. (2009). Emerging pharmacotherapy of tinnitus. Expert Opin Emerg Drugs, 14(4), 687-702.
    • Le Beau, F. E., Rees, A., and Malmierca, M. S. (1996). Contribution of gaba- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J Neurophysiol, 75(2), 902-19.
    • Leaver, A. M., Seydell-Greenwald, A., Turesky, T. K., Morgan, S., Kim, H. J., and Rauschecker, J. P. (2012). Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci, 6, 21.
    • Leitner, D. S., Hammond, G. R., Springer, C. P., Ingham, K. M., Mekilo, A. M., Bodison, P. R., Aranda, M. T., and Shawaryn, M. A. (1993). Parameters affecting gap detection in the rat. Percept Psychophys, 54(3), 395-405.
    • L´evesque, B., Fiset, R., Isabelle, L., Gauvin, D., Baril, J., Larocque, R., Gingras, S., Girard, S.-A., Leroux, T., and Picard, M. (2009). Exposure to noise from personal music players for high school students. Epidemiology, 20(6), S173-S174 10.1097/01.ede.0000362588.89190.98.
    • Li, L. and Frost, B. J. (1996). Azimuthal sensitivity of rat pinna reflex: Emg recordings from cervicoauricular muscles. Hear Res, 100(1-2), 192-200.
    • Liberman, M. C. and Dodds, L. W. (1984). Single-neuron labeling and chronic cochlear pathology. iii. stereocilia damage and alterations of threshold tuning curves. Hear Res, 16(1), 55-74.
    • Lister, J. J. and Roberts, R. A. (2005). Effects of age and hearing loss on gap detection and the precedence effect: Narrow-band stimuli. J Speech Lang Hear Res, 48(2), 482-493.
    • Lobarinas, E., Hayes, S. H., and Allman, B. L. (2013). The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res, 295, 150-60.
    • Lobarinas, E., Yang, G., Sun, W., Ding, D., Mirza, N., Dalby-Brown, W., Hilczmayer, E., Fitzgerald, S., Zhang, L., and Salvi, R. (2006). Salicylate- and quinine-induced tinnitus and effects of memantine. Acta Otolaryngol Suppl, 556, 13-9.
    • Lockwood, A. H., Salvi, R. J., and Burkard, R. F. (2002). Tinnitus. N Engl J Med, 347(12), 904-10.
    • Lockwood, A. H., Salvi, R. J., Coad, M. L., Towsley, M. L., Wack, D. S., and Murphy, B. W. (1998). The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology, 50(1), 114-20.
    • Loftus, W. C., Malmierca, M. S., Bishop, D. C., and Oliver, D. L. (2008). The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience, 154(1), 196-205.
    • Longenecker, R. J. and Galazyuk, A. V. (2011). Development of tinnitus in cba/caj mice following sound exposure. J Assoc Res Otolaryngol, 12(5), 647-658.
    • Lutkenhoner, B. and Steinstrater, O. (1998). High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootol, 3(2-3), 191-213.
    • Malmierca, M., Cristaudo, S., Perez-Gonzalez, D., and Covey, E. (2009). Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci, 29, 5483-5493.
    • Malmierca, M., Rees, A., and Beau, F. (1997). Ascending projections to the medial geniculate body from physiologically identified loci in the inferior colliculus. In Syka, J., editor, Acoustical Signal Processing in the Central Auditory System, pages 295-302. Springer US.
    • Malmierca, M. S., Rees, A., Le Beau, F. E., and Bjaalie, J. G. (1995). Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. J Comp Neurol, 357(1), 124-44.
    • Manzoor, N. F., Gao, Y., Licari, F., and Kaltenbach, J. A. (2013). Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res, 295, 114-23.
    • Marsh, R. A., Fuzessery, Z. M., Grose, C. D., and Wenstrup, J. J. (2002). Projection to the inferior colliculus from the basal nucleus of the amygdala. J Neurosci, 22(23), 10449-60.
    • McAlpine, D. (2009). The central auditory system. In Graham, J. and Baguley, D., editors, Ballantyne's Deafness, book section 4, pages 31-39. Wiley-Blackwell, London, 7th edition.
    • McCombe, A., Baguley, D., Coles, R., McKenna, L., McKinney, C., and Windle-Taylor, P. (2001). Guidelines for the grading of tinnitus severity: the results of a working group commissioned by the british association of otolaryngologists, head and neck surgeons, 1999. Clin Otolaryngol Allied Sci, 26(5), 388-93.
    • Meikle, M. B. (2002). A conceptual framework to aid the diagnosis and treatment of severe tinnitus. Aust NZ J Audiol, 24(2), 59.
    • Meikle, M. B., Vernon, J., and Johnson, R. M. (1984). The perceived severity of tinnitus. some observations concerning a large population of tinnitus clinic patients. Otolaryngol Head Neck Surg, 92(6), 689-96.
    • Melcher, J. R., Guinan, J. J., J., Knudson, I. M., and Kiang, N. Y. (1996a). Generators of the brainstem auditory evoked potential in cat. ii. correlating lesion sites with waveform changes. Hear Res, 93(1-2), 28-51.
    • Melcher, J. R. and Kiang, N. Y. (1996). Generators of the brainstem auditory evoked potential in cat. iii: Identified cell populations. Hear Res, 93(1-2), 52-71.
    • Melcher, J. R., Knudson, I. M., Fullerton, B. C., Guinan, J. J., J., Norris, B. E., and Kiang, N. Y. (1996b). Generators of the brainstem auditory evoked potential in cat. i. an experimental approach to their identification. Hear Res, 93(1-2), 1-27.
    • Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., and Zook, J. M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol, 224(4), 591-605.
    • Mongan, E., Kelly, P., Nies, K., Porter, W. W., and Paulus, H. E. (1973). Tinnitus as an indication of therapeutic serum salicylate levels. JAMA, 226(2), 142-5.
    • Muhlau, M., Rauschecker, J. P., Oestreicher, E., Gaser, C., Rottinger, M., Wohlschlager, A. M., Simon, F., Etgen, T., Conrad, B., and Sander, D. (2006). Structural brain changes in tinnitus. Cereb Cortex, 16(9), 1283-8.
    • Muhlnickel, W., Elbert, T., Taub, E., and Flor, H. (1998). Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A, 95(17), 10340-10343.
    • Mulders, W. H. and Robertson, D. (2009). Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience, 164(2), 733-46.
    • Mulders, W. H. A. M., Ding, D., Salvi, R., and Robertson, D. (2011). Relationship between auditory thresholds, central spontaneous activity, and hair cell loss after acoustic trauma. J Comp Neurol, 519(13), 2637-2647.
    • Rajan, R. and Irvine, D. R. F. (1996). Features of, and boundary conditions for, lesion-induced reorganization of adult auditory cortical maps. In Salvi, R. J., editor, Auditory System Plasticity and Regeneration, book section 18, pages 224-237. Thieme, New York.
    • Rajan, R., Irvine, D. R. F., Wise, L. Z., and Heil, P. (1993). Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory-cortex. J Comp Neurol, 338(1), 17-49.
    • Ralli, M., Lobarinas, E., Fetoni, A. R., Stolzberg, D., Paludetti, G., and Salvi, R. (2010). Comparison of salicylate- and quinine-induced tinnitus in rats: development, time course, and evaluation of audiologic correlates. Otol Neurotol, 31(5), 823-31.
    • Ramachandran, V. S. and Hirstein, W. (1998). The perception of phantom limbs - the d.o. hebb lecture. Brain, 121, 1603-1630.
    • Rapisarda, C. and Bacchelli, B. (1977). The brain of the guinea pig in stereotaxic coordinates. Arch Sci Biol (Bologna), 61(1-4), 1.
    • Rasmusson, D. D. and Turnbull, B. G. (1983). Immediate effects of digit amputation on si cortex in the raccoon - unmasking of inhibitory fields. Brain Res, 288(1-2), 368-370.
    • Rauschecker, J. P., Leaver, A. M., and Muhlau, M. (2010). Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron, 66(6), 819-26.
    • Redies, H., Sieben, U., and Creutzfeldt, O. D. (1989). Functional subdivisions in the auditory-cortex of the guinea-pig. J Comp Neurol, 282(4), 473-488.
    • Reiterer, S., Erb, M., Droll, C., Anders, S., Ethofer, T., Grodd, W., and Wildgruber, D. (2005). Impact of task difficulty on lateralization of pitch and duration discrimination. Neuroreport, 16, 239-242.
    • Rhode, W. and Smith, P. (1986). Physiological studies on neurons in the dorsal cochlear nucleus of cat. J Neurophysiol, 56, 287-307.
    • Roberts, L. E. (2007). Residual inhibition. Prog Brain Res, 166, 487-95.
    • Roberts, L. E., Eggermont, J. J., Caspary, D. M., Shore, S. E., Melcher, J. R., and Kaltenbach, J. A. (2010). Ringing ears: The neuroscience of tinnitus. J Neurosci, 30(45), 14972-14979.
    • Roberts, L. E., Moffat, G., and Bosnyak, D. J. (2006). Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol Suppl, 556(556), 27-33.
    • Robertson, D. and Irvine, D. R. F. (1989). Plasticity of frequency organization in auditory-cortex of guinea-pigs with partial unilateral deafness. J Comp Neurol, 282(3), 456-471.
    • Rudell, A. P. (1987). A fiber tract model of auditory brain-stem responses. Electroencephalogr Clin Neurophysiol, 67(1), 53-62.
    • Ruggero, M. A. (1994). Cochlear delays and traveling waves - comments on experimental look at cochlear mechanics. Audiology, 33(3), 131-142.
    • Ruttiger, L., Singer, W., Panford-Walsh, R., Matsumoto, M., Lee, S. C., Zuccotti, A., Zimmermann, U., Jaumann, M., Rohbock, K., Xiong, H., and Knipper, M. (2013). The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One, 8(3), e57247.
    • Ryugo, D. K. and Parks, T. N. (2003). Primary innervation of the avian and mammalian cochlear nucleus. Brain Res Bull, 60(5-6), 435-56.
    • Sachser, N., Kunzl, C., and Kaiser, S. (2007). The welfare of laboratory guinea pigs. In Kaliste, E., editor, The welfare of laboratory animals, book section 9, pages 181-209. Springer, Dordrecht, Netherlands.
    • Saenz, M. and Langers, D. R. (2013). Tonotopic mapping of human auditory cortex. Hear Res, [published online ahead of print 2 August 2013], Accessed August 29, 2013.
    • Sah, P., Faber, E. S., Lopez De Armentia, M., and Power, J. (2003). The amygdaloid complex: anatomy and physiology. Physiol Rev, 83(3), 803-34.
    • Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., and Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216-219.
    • Salvi, R. J. and Ahroon, W. A. (1983). Tinnitus and neural activity. J Speech Hear Res, 26(4), 629-32.
    • Salvi, R. J., Wang, J., and Ding, D. (2000). Auditory plasticity and hyperactivity following cochlear damage. Hear Res, 147(1-2), 261-74.
    • Samelli, A. and Schochat, E. (2008). Study of the right ear advantage on gap detection tests. Braz J Otorhinolaryngol, 74, 235-240.
    • Sanchez, T. and Pio, M. (2007). The cure of a gaze-evoked tinnitus by repetition of gaze movements. Int Arch Otorhinolaryngol, 3, 345-349.
    • Sand, P., Langguth, B., Kleinjung, T., and Eichhammer, P. (2007). Genetics of chronic tinnitus. Prog Brain Res, 166, 159-168.
    • Santarelli, R., Scimemi, P., Dal Monte, E., and Arslan, E. (2006). Cochlear microphonic potential recorded by transtympanic electrocochleography in normally-hearing and hearing-impaired ears. Acta Otorhinolaryngol Ital, 26(2), 78-95.
    • Snyder, R. L., Sinex, D. G., McGee, J. D., and Walsh, E. W. (2000). Acute spiral ganglion lesions change the tuning and tonotopic organization of cat inferior colliculus neurons. Hear Res, 147(1-2), 200-220.
    • Steinert, J. R., Chernova, T., and Forsythe, I. D. (2010). Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist, 16(4), 435-452.
    • Stolzberg, D., Chen, G. D., Allman, B. L., and Salvi, R. J. (2011). Salicylate-induced peripheral auditory changes and tonotopic reorganization of auditory cortex. Neuroscience, 180, 157-64.
    • Stolzberg, D., Salvi, R. J., and Allman, B. L. (2012). Salicylate toxicity model of tinnitus. Front Syst Neurosci, 6, 28.
    • Strelcyk, O., Christoforidis, D., and Dau, T. (2009). Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity. J Acoust Soc Am, 126(4), 1878-1888.
    • Tyler, R., Coelho, C., Tao, P., Ji, H., Noble, W., Gehringer, A., and Gogel, S. (2008). Identifying tinnitus subgroups with cluster analysis. Am J Audiol, 17(2), S176-84.
    • Tyler, R. S. and Conrad-Armes, D. (1983). Tinnitus pitch: a comparison of three measurement methods. Br J Audiol, 17(2), 101-7.
    • Ulfendahl, M. and Flock, A. A. (1998). Outer hair cells provide active tuning in the organ of corti. News Physiol Sci, 13, 107-111.
    • Vogler, D. P., Robertson, D., and Mulders, W. H. (2011). Hyperactivity in the ventral cochlear nucleus after cochlear trauma. J Neurosci, 31(18), 6639-45.
    • Wang, H., Brozoski, T. J., and Caspary, D. M. (2011). Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res, 279(1-2), 111-7.
    • Zhang, J., Heffner, H. E., Koay, G., and Kaltenbach, J. A. (2004). Hyperactivity in the hamster dorsal cochlear nucleus: Its relationship to tinnitus. ARO Abstract, 27, 302.
    • Zhang, J., Zhang, Y., and Zhang, X. (2011). Auditory cortex electrical stimulation suppresses tinnitus in rats. J Assoc Res Otolaryngol, 12(2), 185-201.
    • Zhang, J. S., Kaltenbach, J. A., Godfrey, D. A., and Wang, J. (2006). Origin of hyperactivity in the hamster dorsal cochlear nucleus following intense sound exposure. J Neurosci Res, 84(4), 819-31.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article