LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nuño, Manuel; Pesce, Giovanni L.; Bowen, Chris R.; Xenophontos, Panayiotis; Ball, Richard J. (2015)
Publisher: Elsevier BV
Journal: Building and Environment
Languages: English
Types: Article
Subjects: Building and Construction, K200, Geography, Planning and Development, Environmental Engineering, F800, Civil and Structural Engineering, K900
This paper describes the environmental performance of a mixed phase coating (photocatalytic nanolime) manufactured from a colloidal nano-structured calcium hydroxide in alcohol (nanolime) combined with titanium dioxide. While nanolime is used as a consolidant in the field of cultural heritage and titanium dioxide is used as a photocatalytic material for self-cleaning coatings and environmental pollution control within the construction industry both materials are often used separately. We report in this paper an approach to combine both materials for the development of a photocatalytic nanolime coating. The photocatalytic effect of titanium dioxide on the carbonation of nanolime and its influence on the degradation processes in polluted environments is explored. A suspension of 25g/l of nanolime in ethanol and 7.4% wt/vol titanium dioxide was applied to specimens of Bath stone. For comparison, additional specimens were treated only with the nanolime. The specimens were exposed to oxides of nitrogen and sulphur under 30% RH for 120 hours. Exposure was carried out under both, UV and daylight. After exposure, the effect of titanium dioxide on the carbonation of nanolime and on the degradation processes was investigated using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and X-ray photo electron spectroscopy (XPS). Results were evaluated considering the dissolution processes of the two oxides in water, and modelled using PHREEQC. Results show that the nanolime and the photocatalytic nanolime coatings promote the reaction of SO2. In addition, the photocatalytic effect of the anatase form of titanium dioxide promotes the formation of a surface layer of calcium sulphate and inhibits carbonation of calcium hydroxide. That was attributed to the oxidation of sulphur dioxide to sulphur trioxide by hydroxyl radicals which led to the formation of sulphuric acid.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Lancia, D. Musmarra, F. Pepe, Modeling of SO2 Absorption into limestone suspensions, Ind. Eng. Chem. Res. 36 (1) (Jan. 1997) 197e203.
    • [2] G.C. Allen, A. El-Turki, K.R. Hallam, D. McLaughlin, M. Stacey, Role of NO2 and SO2 in degradation of limestone, Br. Corros. J. 35 (1) (Jan. 2000) 35e38.
    • [3] Y.-N. Lee, S.E. Schwartz, Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water, J. Geophys. Res. Ocean. 86 (C12) (Dec. 1981) 11971e11983.
    • [4] P. Kirkitsos, D. Sikiotis, Deterioration of Pentelic marble, Portland limestone and Baumberger sandstone in laboratory exposures to NO2: a comparison with exposures to gaseous HNO3, Atmos. Environ. 30 (6) (Mar. 1996) 941e950.
    • [5] L. Dei, B. Salvadori, Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay, J. Cult. Herit. 7 (2) (Apr. 2006) 110e115.
    • [6] V. Daniele, G. Taglieri, Nanolime suspensions applied on natural lithotypes: the influence of concentration and residual water content on carbonatation process and on treatment effectiveness, J. Cult. Herit. 11 (1) (Jan. 2010) 102e106.
    • [7] V. Daniele, G. Taglieri, R. Quaresima, The nanolimes in cultural heritage conservation: characterisation and analysis of the carbonatation process, J. Cult. Herit. 9 (3) (Jul. 2008) 294e301.
    • [8] R. Giorgi, L. Dei, P. Baglioni, A new method for consolidating wall paintings based on dispersions of lime in alcohol, Stud. Conserv. 45 (3) (Sep. 2000) 154e161.
    • [9] P. Baglioni, R. Giorgi, Soft and hard nanomaterials for restoration and conservation of cultural heritage, Soft Matter 2 (4) (2006) 293e303.
    • [10] R. Giorgi, L. Dei, M. Ceccato, C. Schettino, P. Baglioni, Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification, Langmuir 18 (21) (Sep. 2002) 8198e8203.
    • [11] P. Lopez-Arce, L.S. Gomez-Villalba, L. Pinho, M.E. Fernandez-Valle, M.A. de Buergo, R. Fort, Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques, Mater. Charact. 61 (2) (Feb. 2010) 168e184.
    • [12] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (12) (2008) 515e582.
    • [13] S.-A. Lee, K.-H. Choo, C.-H. Lee, H.-I. Lee, T. Hyeon, W. Choi, H.-H. Kwon, Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment, Ind. Eng. Chem. Res. 40 (7) (Mar. 2001) 1712e1719.
    • [14] J. Ryu, W. Choi, Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application, Environ. Sci. Technol. 42 (1) (Nov. 2007) 294e300.
    • [15] J. Kolarik, J. Toftum, The impact of a photocatalytic paint on indoor air pollutants: sensory assessments, Build. Environ. 57 (0) (2012) 396e402.
    • [16] G. Hüsken, M. Hunger, H.J.H. Brouwers, Experimental study of photocatalytic concrete products for air purification, Build. Environ. 44 (12) (Dec. 2009) 2463e2474.
    • [17] G. Ramakrishnan, A. Orlov, Development of novel inexpensive adsorbents from waste concrete to mitigate NOx emissions, Build. Environ. 72 (Feb. 2014) 28e33.
    • [18] A.M. Ramirez, K. Demeestere, N. De Belie, T. Ma€ntyla€, E. Leva€nen, Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential, Build. Environ. 45 (4) (2010) 832e838.
    • [19] M. Nun~o, R.J. Ball, C.R. Bowen, Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry, J. Mass Spectrom. 49 (8) (2014) 716e726.
    • [20] Y. Ohko, S. Saitoh, T. Tatsuma, A. Fujishima, Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel, J. Electrochem. Soc. 148 (1) (Jan. 2001) B24eB28.
    • [21] Z. Wu, D. Lee, M.F. Rubner, R.E. Cohen, Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 bragg stacks, Small 3 (8) (Aug. 2007) 1445e1451.
    • [22] Y. Paz, Z. Luo, L. Rabenberg, A. Heller, Photooxidative self-cleaning transparent titanium dioxide films on glass, J. Mater. Res. 10 (11) (1995) 2842e2848.
    • [23] E.I. Cedillo-Gonzalez, R. Ricco, M. Montorsi, M. Montorsi, P. Falcaro, C. Siligardi, Self-cleaning glass prepared from a commercial TiO2 nanodispersion and its photocatalytic performance under common anthropogenic and atmospheric factors, Build. Environ. 71 (Jan. 2014) 7e14.
    • [24] A. Chabas, S. Alfaro, T. Lombardo, A. Verney-Carron, E. Da Silva, S. Triquet, H. Cachier, E. Leroy, Long term exposure of self-cleaning and reference glass in an urban environment: a comparative assessment, Build. Environ. 79 (Sep. 2014) 57e65.
    • [25] A. Chabas, T. Lombardo, H. Cachier, M.H. Pertuisot, K. Oikonomou, R. Falcone, M. Verita, F. Geotti-Bianchini, Behaviour of self-cleaning glass in urban atmosphere, Build. Environ. 43 (12) (Dec. 2008) 2124e2131.
    • [26] M. Nun~o, R.J. Ball, C.R. Bowen, R. Kurchania, G.D. Sharma, Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings, J. Mater. Sci. 50 (14) (2015) 4822e4835.
    • [27] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (5358) (1972) 37e38.
    • [28] A.Z. Fujishima, Titanium dioxide photocatalysis: present situation and future approaches, Comptes Rendus Chim. 9 (5e6) (2006) 750e760.
    • [29] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (1) (2000) 1e21.
    • [30] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (1e2) (2004) 33e177.
    • [31] G.C. Allen, A. El-Turki, K.R. Hallam, D. McLaughlin, M. Stacey, Role of NO2 and SO2 on the degradation of limestone, in: D.J. Mitchell, D.E. Searle (Eds.), Stone Deterioration in Polluted Urban Environments, vol. 3, CRC publisher, 2004, pp. 119e130.
    • [32] C.A.J. Appelo, D. Postma, Geochemistry, Groundwater and Pollution, Second Edition, CRC Press/Taylor & Francis, Boca Raton, FL, 2005, p. 683.
    • [33] Y. Elakneswaran, A. Iwasa, T. Nawa, T. Sato, K. Kurumisawa, Ion-cement hydrate interactions govern multi-ionic transport model for cementitious materials, Cem. Concr. Res. 40 (12) (Dec. 2010) 1756e1765.
    • [34] P. Brown, A. Doerr, Chemical changes in concrete due to the ingress of aggressive species, Cem. Concr. Res. 30 (3) (Mar. 2000) 411e418.
    • [35] D. Jacques, L. Wang, E. Martens, D. Mallants, Modelling chemical degradation of concrete during leaching with rain and soil water types, Cem. Concr. Res. 40 (8) (Aug. 2010) 1306e1313.
    • [36] D. Sugiyama, Chemical alteration of calcium silicate hydrate (CeSeH) in sodium chloride solution, Cem. Concr. Res. 38 (11) (Nov. 2008) 1270e1275.
    • [37] M. Moranville, S. Kamali, E. Guillon, Physicochemical equilibria of cementbased materials in aggressive environmentsdexperiment and modeling, Cem. Concr. Res. 34 (9) (Sep. 2004) 1569e1578.
    • [38] C.S. Walker, D. Savage, M. Tyrer, K.V. Ragnarsdottir, Non-ideal solid solution aqueous solution modeling of synthetic calcium silicate hydrate, Cem. Concr. Res. 37 (4) (Apr. 2007) 502e511.
    • [39] F.X. Yao, M.C. Arbestain, S. Virgel, F. Blanco, J. Arostegui, J.A. Macia-Agullo, F. Macías, Simulated geochemical weathering of a mineral ash-rich biochar in a modified soxhlet reactor, Chemosphere 80 (7) (Aug. 2010) 724e732.
    • [40] M. Serrapede, G.L. Pesce, R.J. Ball, G. Denuault, Nanostructured Pd hydride microelectrodes: in situ monitoring of pH variations in a porous medium, Anal. Chem. 86 (12) (Jun. 2014) 5758e5765.
    • [41] O€. Cizer, C. Rodriguez-Navarro, E. Ruiz-Agudo, J. Elsen, D. Van Gemert, K. Van Balen, Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime, J. Mater. Sci. 47 (16) (2012) 6151e6165.
    • [42] G.L. Pesce, D. Morgan, D. Odgers, A. Henry, M. Allen, R.J. Ball, Consolidation of weathered limestone using nanolime, Proc. ICE e Constr. Mater. 166 (2013) 213e228.
    • [43] I.-C. Kang, Q. Zhang, S. Yin, T. Sato, F. Saito, Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment, Appl. Catal. B Environ. 80 (1e2) (Apr. 2008) 81e87.
    • [44] B. Demri, D. Muster, XPS study of some calcium compounds, J. Mater. Process. Technol. 55 (3e4) (Dec. 1995) 311e314.
    • [45] M. Ni, B.D. Ratner, Differentiation of calcium carbonate polymorphs by surface analysis techniques e An XPS and TOF-SIMS study, Surf. Interface Anal. 40 (10) (Oct. 2008) 1356e1361.
    • [46] S.L. Stipp, M.F. Hochella, Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED), Geochim. Cosmochim. Acta 55 (6) (Jun. 1991) 1723e1736.
    • [47] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, 1992.
    • [48] A.B. Christie, J. Lee, I. Sutherland, J.M. Walls, An XPS study of ion-induced compositional changes with group II and group IV compounds, Appl. Surf. Sci. 15 (1e4) (Apr. 1983) 224e237.
    • [49] A.P. Dementjev, Altered layer as sensitive initial chemical state indicator*, J. Vac. Sci. Technol. A Vac. Surfaces, Film. 12 (2) (Mar. 1994) 423.
    • [50] B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. ElAasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir 17 (9) (May 2001) 2664e2669.
    • [51] R.V. Siriwardane, J.M. Cook, Interactions of SO2 with sodium deposited on CaO, J. Colloid Interface Sci. 114 (2) (Dec. 1986) 525e535.
    • [52] H. Lu, P.G. Smirniotis, Calcium oxide doped sorbents for CO2 uptake in the presence of SO2 at high temperatures, Ind. Eng. Chem. Res. 48 (11) (Jun. 2009) 5454e5459.
    • [53] T. Chin, R. Yan, D.T. Liang, Study of the reaction of lime with HCl under simulated flue gas conditions using X-ray diffraction characterization and thermodynamic prediction, Ind. Eng. Chem. Res. 44 (23) (Nov. 2005) 8730e8738.
    • [54] J.J. Margitan, Mechanism of the atmospheric oxidation of sulfur dioxide. Catalysis by hydroxyl radicals, J. Phys. Chem. 88 (15) (Jul. 1984) 3314e3318.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article