Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Christian, J M; McDonald, G S; Hodgkinson, T F; Chamorro-Posada, P
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: other
A simple scalar model for describing spatiotemporal dispersion of pulses, beyond the classic “slowly-varying envelopes + Galilean boost” approach, is studied. The governing equation has a cubic nonlinearity and we focus here mainly on contexts with normal group-velocity dispersion. A complete analysis of continuous waves is reported, including their dispersion relations and modulational instability characteristics. We also present a detailed derivation of exact analytical dark solitons, obtained by combining direct-integration methods with geometrical transformations. Classic results from conventional pulse theory are recovered as-ymptotically from the spatiotemporal formulation. Numerical simulations test new theoretical predictions for modulational instability, and examine the robustness of spatiotemporal dark solitons against perturbations to their local pulse shape.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989); A. C. Scott, F. Y. F. Chu, and D.
    • W. McLaughlin, Proc. IEEE 61, 1443 (1973).
    • Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998); Y. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993).
    • R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, London 1982); G. L. Lamb, Elements of Soliton Theory (John Wiley & Sons, New York, 1980).
    • J. M. Christian et al., Phys. Rev. Lett. 108, 034101 (2012).
    • J. M. Christian et al., "Wave envelopes with second-order spatiotemporal dispersion: I. Kerr bright solitons and cnoidal waves," submitted to Phys. Rev. A (2012).
    • R. W. Boyd, Nonlinear Optics 2nd Ed. (Academic Press, San Diego, 2003); K. J. Blow and N. J.
    • Doran, “Solitons in optical fibres,” pp. 325 in Nonlinear Waves in Solid State Physics, ed. A. D.
    • Boardman et al. (Plenum Press, New York, 1990); Kh. I. Pushkarov, D. I. Pushkarov, and I. V. Tomov, Opt. Quantum Electon. 11, 471 (1979).
    • V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972); ibid 37, 823 (1973).
    • [28] D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, Phys. Rev. E 54, 2015 (1996); I. V. Barashenkov, Phys. Rev. Lett. 77, 1193 (1996).
    • [29] P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, Opt. Commun. 192, 1 (2001).
    • [30] M. J. Ablowitz et al., J. Opt. Soc. Am. B 14, 1788 (1997); J. P. Gordon, Opt. Lett. 8, 596 (1983).
    • [31] P. Chamorro-Posada and G. S. McDonald, Phys. Rev. E 74, 036609 (2006).
    • [32] S. V. Manakov, Sov. Phys. JETP 38, 248 (1974); J. M. Christian, G. S. McDonald, and P. ChamorroPosada, Phys. Rev. E 74, 066612 (2006).
    • [33] Y. S. Kivshar and S. K. Turitsyn, Opt. Lett. 18, 227 (1993); V. K. Mesentsev and S. K. Turitsyn, ibid 17, 1497 (1992); Y. S. Kivshar, ibid 17, 1322 (1992); V. V Afanasjev et al., ibid 14, 805 (1989); D. N. Christodoulides and R. I. Joseph, ibid 13, 53 (1988).
    • [34] C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988); Opt. Lett. 12, 614 (1987); IEEE J. Quantum Electron. 23, 174 (1987).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article