LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Voulgaridou, Georgia-Persephoni; Kiziridou, Magdalini; Mantso, Theodora; Chlichlia, Katerina; Galanis, Alex; Koukourakis, Michael; Franco, Rodrigo; Panagiotidis, Mihalis; Pappa, Aglaia (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: B100, C400
Aldehyde dehydrogenases participate in a variety of cellular homeostatic mechanisms like metabolism, proliferation, differentiation, apoptosis, whereas recently, they have been implicated in normal and cancer cell stemness. We explored roles for ALDH3A1 in conferring resistance to chemotherapeutics/radiation/oxidative stress and whether ectopic overexpression of ALDH3A1 could lead to alterations of gene expression profile associated with cancer stem cell-like phenotype. MCF-7 cells were stably transfected either with an empty vector (mock) or human aldehyde dehydrogenase 3A1 cDNA. The expression of aldehyde dehydrogenase 3A1 in MCF-7 cells was associated with altered cell proliferation rate and enhanced cell resistance against various chemotherapeutic drugs (4-hydroxyperoxycyclophosphamide, doxorubicin, etoposide, and 5-fluorouracil). Aldehyde dehydrogenase 3A1 expression also led to increased tolerance of MCF-7 cells to gamma radiation and hydrogen peroxide-induced stress. Furthermore, aldehyde dehydrogenase 3A1-expressing MCF-7 cells exhibited gene up-regulation of cyclins A, B1, B2, and down-regulation of cyclin D1 as well as transcription factors p21, CXR4, Notch1, SOX2, SOX4, OCT4, and JAG1. When compared to mock cells, no changes were observed in mRNA levels of ABCA2 and ABCB1 protein pumps with only a minor decrease of the ABCG2 pump in the aldehyde dehydrogenase 3A1-expressing cells. Also, the adhesion molecules EpCAM and CD49F were also found to be up-regulated in aldehyde dehydrogenase 3A1expressing cells. Taken together, ALDH3A1 confers a multi-modality resistance phenotype in MCF-7 cells associated with slower growth rate, increased clonogenic capacity, and altered gene expression profile, underlining its significance in cell homeostasis.

Share - Bookmark

Cite this article