Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Herminghaus, S; Maass, CC; Krüger, C; Thutupalli, S; Goehring, L; Bahr, C (2014)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Active emulsions, i.e., emulsions whose droplets perform self-propelled motion, are of tremendous interest for mimicking collective phenomena in biological populations such as phytoplankton and bacterial colonies, but also for experimentally studying rheology, pattern formation, and phase transitions in systems far from thermal equilibrium. For fuelling such systems, molecular processes involving the surfactants which stabilize the emulsions are a straightforward concept. We outline and compare two different types of reactions, one which chemically modifies the surfactant molecules, the other which transfers them into a different colloidal state. While in the first case symmetry breaking follows a standard linear instability, the second case turns out to be more complex. Depending on the dissolution pathway, there is either an intrinsically nonlinear instability, or no symmetry breaking at all (and hence no locomotion).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 54 S. Thutupalli, R. Seemann and S. Herminghaus, New J. Phys., 65 Ch. Bahr, Phys. Rev. E: Stat., Nonlinear, So Matter Phys., 2011, 13, 073021. 2006, 73, 030702(R).
    • 55 S. Thutupalli and S. Herminghaus, Eur. Phys. J. E, 2013, 36, 66 Food Proteins and Lipids, ed. S. Damodaran, Springer, 91. Heidelberg, 1997.
    • 56 A. N. Zaikin and A. M. Zhabotinsky, Nature, 1970, 225, 535- 67 N. Matubayasi, S. Sugiyama, M. Kanzaki and A. Matuzawa, 537. J. Colloid Interface Sci., 1997, 196, 123.
    • 57 A. T. Winfree, Science, 1972, 175, 634-636. 68 B.-H. Chen, C. A. Miller and P. R. Garrett, Langmuir, 1998, 14,
    • 58 S. Thutupalli, Towards Autonomous So Matter Systems, 31. Springer, Heidelberg, 2014. 69 P. D. Todorov, et al., J. Colloid Interface Sci., 2002, 245, 371.
    • 59 M. D. LeVan and J. Newman, AIChE J., 1976, 22, 695-701. 70 S. Ariyaprakai and S. R. Dungan, Langmuir, 2008, 24, 3061.
    • 60 M. Schmitt and H. Stark, Europhys. Lett., 2013, 101, 44008. 71 I. Langmuir, J. Am. Chem. Soc., 1916, 38, 2221.
    • 61 V. Pimienta, M. Brost, N. Kovalchuk, S. Bresch and 72 A. J. I. Ward and K. Quingley, J. Dispersion Sci. Technol., 1990, O. Steinbock, Angew. Chem., Int. Ed., 2011, 50, 10728-10731. 11, 143.
    • 62 K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus and 73 S. G. Oh and D. O. Shah, J. Am. Oil Chem. Soc., 1993, 70, 673. C. Bahr, Langmuir, 2012, 28, 12426-12431. 74 Handbook of Mathematical Functions, ed. M. Abramowitz and
    • 63 A. Sengupta, Topological Micro-Fluidics, Springer, I. A. Stegun, Dover, New York, 1965. Heidelberg, 2013. 75 S. Gangwal, O. J. Cayre, M. Z. Bazant and O. D. Velev, Phys.
    • 64 O. O. Prishchepa, A. V. Shabanov and V. Y. Zyryanov, Phys. Rev. Lett., 2008, 100, 058302. Rev. E: Stat., Nonlinear, So Matter Phys., 2005, 72, 031712. 76 J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine and P. M. Chaikin, Science, 2013, 339, 936-940.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article