LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Graham, Neil S.; Broadley, Martin R.; Hammond, John P.; White, Philip J.; May, Sean T. (2007)
Publisher: BioMed Central Ltd.
Journal: BMC Genomics
Languages: English
Types: Article
Subjects: QR, Biotechnology, QH426-470, Genetics, Research Article, TP248.13-248.65

Classified by OpenAIRE into

mesheuropmc: food and beverages

Abstract

Background

Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe-set, consisting of up to 16 probe-pairs. Signal intensities across probe-pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We have previously developed a technique to study the transcriptomes of heterologous species based on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology.

Results

Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation intensity increased the number of genes identified as significantly differentially expressed in two published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice.

Conclusion

This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays.

Share - Bookmark

Cite this article