LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Glowacki, D. R.; O'Connor, M.; Calabro, G.; Price, J.; Tew, P.; Mitchell, T.; Hyde, J.; Tew, D.; Coughtrie, D. J.; McIntosh-Smith, S. (2014)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: /dk/atira/pure/researchoutput/pubmedpublicationtype/D016428, Journal Article
With advances in computational power, the rapidly growing role of computational/simulation methodologies in the physical sciences, and the development of new human-computer interaction technologies, the field of interactive molecular dynamics seems destined to expand. In this paper, we describe and benchmark the software algorithms and hardware setup for carrying out interactive molecular dynamics utilizing an array of consumer depth sensors. The system works by interpreting the human form as an energy landscape, and superimposing this landscape on a molecular dynamics simulation to chaperone the motion of the simulated atoms, affecting both graphics and sonified simulation data. GPU acceleration has been key to achieving our target of 60 frames per second (FPS), giving an extremely fluid interactive experience which is also aesthetically engaging. GPU acceleration has also allowed us to scale the system for use in immersive 360° spaces with an array of up to ten depth sensors, allowing several users to simultaneously chaperone the dynamics. The flexibility of our platform for carrying out molecular dynamics simulations has been considerably enhanced by wrappers that facilitate fast communication with a portable selection of GPU-accelerated molecular force evaluation routines. In this paper, we describe a 360° atmospheric molecular dynamics simulation we have run in a chemistry/physics education context. We also describe initial tests in which users have been able chaperone the dynamics of 10-Alanine peptide embedded in an explicit water solvent. Using this system, both expert and novice users have been able to accelerate peptide rare event dynamics by 3 – 4 orders of magnitude.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 K.-L. Ma, SIGGRAPH Comput. Graph., 2004, 38, 4-7.
    • 2 R. Kobler, T. Kockerbauer, U. Omasits, M. Neumann, W. Schreiner and J. Volkert, Computer Aided Systems Theory' EUROCAST 2007, 2007, pp. 443-447.
    • 3 G. A. Dalkas, D. Vlachakis, D. Tsagkrasoulis, A. Kastania and S. Kossida, Briengs Bioinf., 2013, 14, 745.
    • 4 X. Hou and O. Sourina, in Transactions on computational science XII, Springer, 2011, pp. 98-117.
    • 5 S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovic and F. Players, Nature, 2010, 466, 756-760.
    • 6 O. Delalande, N. Ferey, G. Grasseau and M. Baaden, J. Comput. Chem., 2009, 30, 2375-2387.
    • 7 M. P. Haag and M. Reiher, Int. J. Quantum Chem., 2013, 113, 8-20.
    • 8 T. Schlick, Biophys. J., 2003, 85, 1-4.
    • 9 S. Park, J. Lee and J. I. Kim, Computational Science and Its Applications'A¨`ıICCSA, 2005, 2005, 183-196.
    • 10 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33-38.
    • 11 M. Krone, K. Bidmon and T. Ertl, IEEE Trans. Visualization Comput. Graphics, 2009, 15, 1391-1398.
    • 12 M. Patriarca, A. Kuronen, M. Robles and K. Kaski, Comput. Phys. Commun., 2007, 176, 38-47.
    • 13 T. J. Callahan, E. Swanson and T. P. Lybrand, J. Mol. Graphics, 1996, 14, 39-41.
    • 14 P. Knoll and S. Mirzaei, Rev. Sci. Instrum., 2003, 74, 2483-2487.
    • 15 D. Rapaport, Phys. A, 1997, 240, 246-254.
    • 16 S. Izrailev, S. Stepaniants, B. Isralewitz, D. Kosztin, H. Lu, F. Molnar, W. Wriggers and K. Schulten, in Computational molecular dynamics: challenges, methods, ideas, Springer, 1999, pp. 39-65.
    • 17 M. C. Surles, J. S. Richardson, D. C. Richardson and F. P. Brooks, Protein Sci., 1994, 3, 198-210.
    • 18 A. Bolopion, B. Cagneau, S. Redon and S. Regnier, Haptic molecular simulation based on force control, IEEE Conference on Advanced Intelligent Mechatronics, 2010, pp. 329-334.
    • 19 J. Stone, A. Kohlmeyer, K. Vandivort and K. Schulten, Advances in Visual Computing, 2010, 382-393.
    • 20 J. E. Stone, J. Gullingsrud and K. Schulten, presented in part at the Proceedings of the 2001 symposium on Interactive 3D graphics, 2001.
    • 21 M. Dreher, M. Piuzzi, A. Turki, M. Chavent, M. Baaden, N. Ferey, S. Limet, B. Raffin and S. Robert, in 2013 International Conference on Computational Science, ed. V. Alexandrov, M. Lees, V. Krzhizhanovskaya, J. Dongarra and P. M. A. Sloot, 2013, vol. 18, pp. 20-29.
    • 22 Y. G. Lee and K. W. Lyons, Comput.-Aided Des., 2004, 36, 75-90.
    • 23 A. Ricci, A. Anthopoulos, A. Massarotti, I. Grimstead and A. Brancale, Future Med. Chem., 2012, 4, 1219-1228.
    • 24 M. Stocks, S. Laycock and S. Hayward, J. Comput.-Aided Mol. Des., 2011, 25, 203-211.
    • 25 A. M. Wollacott and K. M. Merz, J. Mol. Graphics Modell., 2007, 25, 801-805.
    • 26 A. Ricci, A. Anthopoulos, A. Massarotti, I. Grimstead and A. Brancale, Future Med. Chem., 2012, 4, 1219-1228.
    • 27 M. P. Haag, K. H. Marti and M. Reiher, ChemPhysChem, 2011, 12, 3204-3213.
    • 28 O. B. Bayazit, G. Song and N. M. Amato, Ligand binding with OBPRM and user input, IEEE International Conference on Robotics and Automation, 2001, pp. 954- 959.
    • 29 P. Grayson, E. Tajkhorshid and K. Schulten, Biophys. J., 2003, 85, 36-48.
    • 30 E. J. Korpela, SETI@home, BOINC, and Volunteer Distributed Computing, Annual Review of Earth and Planetary Sciences, ed. R. Jeanloz, 2012, vol. 40, pp. 69-87.
    • 31 R. Das, Q. Bin, S. Raman, R. Vernon, J. Thompson, P. Bradley, S. Khare, M. D. Tyka, D. Bhat, D. Chivian, D. E. Kim, W. H. Sheffler, L. Malmstrom, A. M. Wollacott, C. Wang, I. Andre and D. Baker, Proteins: Struct., Funct., Bioinf., 2007, 69, 118-128.
    • 32 A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq and V. S. Pande, presented in part at the Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing, 2009.
    • 33 D. Clery, Science, 2011, 333, 173-175.
    • 34 M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung and W. Denk, Nature, 2013, 500, 168-174.
    • 35 F. Khatib, S. Cooper, M. D. Tyka, K. F. Xu, I. Makedon, Z. Popovic, D. Baker and P. Foldit, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 18949-18953.
    • 36 J. Han, L. Shao, D. Xu and J. Shotton, IEEE Transactions on Cybernetics, 2013, 43, 1318-1334.
    • 37 Z. Zhang, IEEE Multimedia, 2012, 19, 4-10.
    • 38 J. Geng, Adv. Opt. Photonics, 2011, 3, 128-160.
    • 39 G. Kramer, B. Walker, T. Bonebright, P. Cook, J. H. Flowers, N. Miner and J. Neuhoff, Sonication report: Status of the eld and research agenda, Faculty Publications, Department of Pyschology, Paper 444, 2010, http:// digitalcommons.unl.edu/psychfacpub/444.
    • 40 M. W. Krueger, presented in part at the Proceedings of the June 13-16 1977 National Computer Conference, Dallas, Texas, 1977.
    • 41 M. Y. Ivanov, Nature, 2012, 483, 161-163.
    • 42 J. Villali and D. Kern, Curr. Opin. Chem. Biol., 2010, 14, 636.
    • 43 S. Bradforth, Science, 2011, 331, 1398-1399.
    • 44 E. S. Shamay, K. E. Johnson and G. L. Richmond, J. Phys. Chem. C, 2011, 115, 25304-25314.
    • 45 A. Taviz, L. A. Mirny and A. M. van Oijen, ChemPhysChem, 2011, 12, 1481- 1489.
    • 46 Q. Wu, T. Ochi, D. Matak-Vinkovic, C. V. Robinson, D. Y. Chirgadze and T. L. Blundell, Biochem. Soc. Trans., 2011, 39, 1387-1392.
    • 47 L. Rothberg, Nat. Chem., 2011, 3, 425-426.
    • 48 A. Chatterjee, A. B. Hazra, S. Abdelwahed, D. G. Hilmey and T. P. Begley, Angew. Chem., Int. Ed., 2010, 49, 8653-8656.
    • 49 D. R. Livesay, Curr. Opin. Pharmacol., 2010, 10, 706-708.
    • 50 T. Delatour, in Molecular Aesthetics, ed. P. Weibel and L. Fruk, MIT Press, Cambridge, MA, 2013, pp. 293-311.
    • 51 D. R. Glowacki, P. Tew, J. Hyde, L. Kriefman, T. Mitchell, J. Price and S. McIntosh-Smith, in Molecular Aesthetics, ed. P. Weibel and L. Fruk, MIT Press, Cambridge, MA, 2013, pp. 248-257.
    • 52 D. R. Glowacki, J. N. Harvey and A. J. Mulholland, Nat. Chem., 2012, 4, 169-176.
    • 53 D. J. Wales, Philos. Trans. R. Soc. London, Ser. A, 2012, 370, 2877-2899.
    • 54 P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L. P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts and V. S. Pande, J. Chem. Theory Comput., 2013, 9, 461-469.
    • 55 D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, Academic press, 2001.
    • 56 E. J. Heller, J. Chem. Phys., 1981, 75, 2923.
    • 57 http://opencv.org/.
    • 58 M. Wright, Organised Sound, 2005, 10, 193-200.
    • 59 http://cycling74.com/products/max/.
    • 60 T. Mitchell, J. Hyde, P. Tew and D. R. Glowacki, in preparation.
    • 61 R. Salomon-Ferrer, D. A. Case and R. C. Walker, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2013, 3, 198-210.
    • 62 M. J. Feige and E. Paci, J. Mol. Biol., 2008, 382, 556-565.
    • 63 D. K. West, P. D. Olmsted and E. Paci, J. Chem. Phys., 2006, 125, 204910.
    • 64 D. R. Glowacki, E. Paci and D. V. Shalashilin, J. Phys. Chem. B, 2009, 113, 16603-16611.
    • 65 D. R. Glowacki, E. Paci and D. V. Shalashilin, J. Chem. Theory Comput., 2011, 7, 1244-1252.
    • 66 D. V. Shalashilin, G. S. Beddard, E. Paci and D. R. Glowacki, J. Chem. Phys., 2012, 137, 165102.
    • 67 C. Forlines and R. Lilien, presented in part at the Proceedings of the working conference on Advanced visual interfaces, Napoli, Italy, 2008.
    • 68 A video of the user-accelerated simulation is available at http:// www.vimeo.com/81531449.
    • 69 D. R. Glowacki, E. Paci and D. V. Shalashilin, J. Phys. Chem. B, 2009, 113, 16603-16611.
    • 70 G. R. Bowman and V. S. Pande, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 10890- 10895.
    • 71 A. Dickson and C. L. Brooks, J. Am. Chem. Soc., 2013, 135, 4729-4734.
    • 72 G. R. Bowman, K. A. Beauchamp, G. Boxer and V. S. Pande, J. Chem. Phys., 2009, 131, 124101.
    • 73 F. Noe, J. Chem. Phys., 2008, 128, 244103.
    • 74 J. Juraszek, J. Vreede and P. G. Bolhuis, Chem. Phys., 2012, 396, 30-44.
    • 75 E. Vanden-Eijnden and M. Venturoli, J. Chem. Phys., 2009, 130, 17.
    • 76 G. Henkelman, B. P. Uberuaga and H. Jonsson, J. Chem. Phys., 2000, 113, 9901- 9904.
    • 77 P. Gonnet, J. Comput. Chem., 2012, 33, 76-81.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article