LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yang, Lei.
Languages: English
Types: Doctoral thesis
Subjects: TA, TC
This study presents investigations on microbiological water quality numerical modelling. Emphases have been laid on the model development by implementing state-of-the-art technologies in terms of the new research branch in water science, established in 1980s - hydroinformatics. In the study, new mathematical equations for modelling bacterial re-suspension from bottom sediments and disappearance due to sediment deposition are established. Therefore, the bacterial re-suspension from bottom sediments is firstly modelled. The bacterial sedimentation equations presenting bacterial disappearance due to sediments settling process in natural waters is also introduced, which is independent from the well- known first order decay model. Based on the new equations, an integrated 1-D and 2-D hydroinformatics water quality simulation model has been developed, carrying out sediment transport associated bacteriological water quality modelling. The model therefore performs modelling work including hydrodynamic modelling, sediment transport modelling and bacterial decay modelling which is associated with the sediment transport processes. The new bacterial decay model encompasses the terms of bacterial first order decay, bacterial resuspension and the bacterial deposition. Object-oriented methodologies are employed in the integration of the sediment-associated multi-dimensional water quality model to encompass well-tested existing modules, by implementing Fortran 90 and Visual Basic 6.0 programming languages to deploy the advanced numerical schemes and provide a state-of-the-art GUI system. Validation and calibration of the integrated sediment-linked water quality model has been carried out in its application to the Bristol Channel and Severn Estuary by using vast volumes of data from in-situ field measurements including: diffuse faecal indicator sources of 29 riverine inputs point faecal indicators sources of 34 WwTW outfalls daily- recording hourly observed sunlight radiation data downstream real-time tidal water elevation boundary data upstream Severn River flowrate variations and the bathymetry data across the 1-D and 2-D domain. Satisfied calibration results were obtained and the model was successfully validated to estimate the enterococci concentration levels at beach bathing water compliance locations, thereby could now be applied to other estuarine environments.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Theoretical Background o f Surface Water Quality Numerical M odelling..........41 Water Quality Numerical Modelling Process...................................................... 41 Basic Concept o f Numerical Method................................................................... 44 3.3. Governing Equations for Hydrodynamic Process................................................. 45 3.3.1. 2-D governing equations................................................................................45 3.3.2. 1-D governing equations................................................................................48 3.4. Advective Diffusion Equation.............................................................................. 49 3.4.1. Advection and diffusion/dispersion terms....................................................51 3.4.2. Sources and sink terms - Ld>s........................................................................ 52 3.5. Numerical Solution in Water Quality Modelling.................................................. 53 3.5.1. Numerical solution of hydrodynamic governing equations..........................54 3.5.2. Numerical solution of advective diffusion equation.....................................55 3.6. Summary................................................................................................................56 4.
    • 1) Abbott, M.B. 1999. Introducing Hydroinformatics. Journal of Hydroinformatics. 1 (1) pp3-19. July 1999.
    • 2) Abbott, M.B. 1979. Computational Hydraulics, Pittman, London.
    • 3) ABP Research & Consultancy Ltd. 1999. Offshore - Onshore Sediment Exchange, Helwick Sands, Gower Peninsula. Technical Report 04. Bristol Channel Marine Aggregates: Resources and Constraints Research Project. Posford Duvivier Ltd, ABP Research & Consultancy Ltd. March 1999.
    • 4) Albrechtsen, H.-J. 1994. Distribution of bacteria, estimated by a viable count method, and heterotrophic activity in different size fractions of aquifer sediment. Geomicrobiology Journal. 12, pp253-264 5) Alkan, U., Elliott, D.J., and Evison, L.M. 1995. Survival of Enteric Bacteria in Relation to Simulated Solar Radiation and Other Environmental Factors in Marine Waters. Wat. Res. 29(9), pp2071-2081.
    • 6 ) Ashbolt, N.J. Grohm Ann G.S. and Kueh C.S.W. 1993. Significance of specific bacteria pathogens in the assessment of polluted receiving waters of Sydney, Australia. In Health Related Water Microbiology, eds R. W. Morris et al. Pergamon Press, Oxford, UK.
    • 7) Babovic, V.M. and Fuhrman, D.R. 2002. Data Assimilation Using Local Models. In “Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK”, Hydroinformatics 2002, Volumn Two. Alden Press, Osney Mead, Oxford, UK. ppl 185-1190.
    • 8 ) Bell, R.G., Munro, D. and Powell, P. 1992. Modelling microbial concentrations from multiply outfalls using time-varying inputs and decay rates. Wat. Sci. Tech. Vol.25 (9), ppl81-188.
    • 9) Bellair, J.T., Parr-Smith, G.A. and Wallis, I.G. 1977. Significance of diurnal variations in faecal coliform die-off rates in the design of ocean outfalls. Journal WPCF, vol.77 (9), pp2022-2030.
    • 10) Blaser, M.J. et al. 1980. Survival of Campylobacter fetus subsp. jejuni in biological milieus. Journal of Clinical Microbiology, Vol. 11, pp309-313.
    • 11) Booch, G. 1994. Object-Oriented Analysis and Design with Applications. Benjamin/Cummings, Menlo Park, CA.
    • 12) Brebbia, C.A. and Ferrante, A.J. 1983. Computational Hydraulics, Butterworths, London.
    • 13) Buckley, R., Clough, E., Wamken, W. and Wild, C. 1998. Coliform bacteria in streambed sediments in a subtropical rainforest conservation reserve. Water Research. 32, ppl852-1856 14) Burton, G.A., Gunnison, D. and Lanza, G.R. 1987. Survival of Pathogenic Bacteria in Varous Freshwater Sediments. Appl. Environ. Microbiol. 53(4), pp633-638.
    • 15) Cahyono, M. 1993. Three-dimensional numerical modelling of sediment transport processes in nonstratified estuarine and coastal waters. PhD thesis. Dept, of Civ. Eng., Univ. of Bradford, Bradford, England.
    • 16) Canale, R.P., Auer, M.T., Owens, E.M., Heidtke, T.M. and Effler, S.W. 1993. Modelling faecal coliform bacteria-II. Model development and application. Wat. Res. Vol.27 (4), pp703-714.
    • 17) Canale, R.P., Patterson, R.L., Gannon, J.J. and Powers, W.F. 1973. Water quality models for total coliform. J. Water Pull. Control Fed., Vol.45, pp325-336.
    • 18) Carcia, M. and Parker, G. 1991. Entrainment of bed sediment into suspension. Journal of Hydraulic Engineering, vol. 117 (4), pp414-435.
    • 19) Celik, I. and Rodi, W. 1991. Suspended sediment transport capacity for open channel flow. J. Hydr, Engrg., ASCE, vol. 117 (2), ppl91-204.
    • 20) Chamberlin, C.E., and Mitchell, R. 1978. A Decay Model for Enteric Bacteria in Natural waters. In "Water Pollution Microbiology Volume 2" edited by R Mitchell, Wiley-Interscience, USA, p325-348.
    • 21) Chan, K.Y., Wong, S.H. and Mak, C.Y. 1979. Effects of bottom sediments on the survival of Enterobacter Aerogenes in seawater. Mar. Pollut. Bull. Vol. 10, pp205-210.
    • 22) Chapra, S.C. 1997. Surface Water-Quality Modelling, International Editions 1997. The McGraw-Hill Companies, Inc., Singapore.
    • 23) Chen, Y. 1992. Numerical Modelling of Solute Transport Processes using higher Order Accurate Finite Difference Schemes. PhD Thesis, university of Bradford, England.
    • 24) Coyne, M.S. et al. 1995. Soil and Faecal Coliform Trapping by Grass Filter Strips During Simulated Rain. J. Soil Water Cons. Vol.50, pp405-408.
    • 25) Crabill, C., Donald, R., Snelling, J., Foust, R. and Southam, G. 1999. The impact of sediment faecal coliform reservoirs on seasonal water quality in Oak Creek, Arizona. Wat. Res. 33(9), pp2613-2171.
    • 26) Crane, S.R. and Moore, J.A. 1986. Modelling enteric bacteria die-off: a review. Water, Air, and Soil Pollution. Vol.27, pp411-439.
    • 27) Crowther, J., Kay, D., and Wyer, M.D. 2001. Relationships between Microbial Water Quality and Environmental Conditions in Coastal Recreational Waters: The Flyde Coastal, UK. Wat. Res. 35(17), pp 4029-4038.
    • 28) Cunge, J.A. and Erlich, M. 1999. Hydroinformatics in 1999. Journal of Hydroinformatics. 1 (1), pp21-31. July 1999.
    • 29) Cunge, J.A., Holly Jr, F.M. and Verwey, A. 1980. Practical Aspects of Computational River Hydraulics. Pitman Publishing Limited. 420p.
    • 30) Davenport, C.V., Sparrow, E.B. and Gordon, R.C. 1976. Fecal indicator bacteria persistence under natural conditions in an ice-covered river. Appl. Environ. Microbiol. Vol.32, pp527-536.
    • 31) Davies, C.M., Long, J.A.H., Donald, M. and Ashbolt N.J. 1995. Survival of Fecal Microorganisms in Marine and Freshwater Sediments. Appl. Environ. Microbiol. 61(5), ppl888-1896.
    • 32) Doran, J.E. and Linn, D.M. 1979. Bacteriological quality of run-off water from pastureland. Appl.
    • Environ. Microbiol. Vol.37, pp985-991.
    • 33) Doyle, J.D., Tunnicliff, B., Kramer, R., Kuehl, R. and Brickler, S.K. 1992. Instability of faecal coliform populations in waters and bottom sediments at recreational beaches in Arizona. Wat. Res.
    • 26(7), pp 979-988.
    • 34) Droste, R.L. 1997. Theory and practice of water and wastewater treatment. John Wiley & Sons, Inc.
    • 35) Dupray, E., Derrien, A. and Pichon, R. 1995. Osmoregulation by trehalose synthesis in Salmonella manhattan after exposure to waste water. Lett. Appl. Microbiol., vol.20,148-151.
    • 36) Dyer, K.R., 1986. Coastal and estuarine sediment dynamics. Wiley, New York, 342pp.
    • 37) Einstein, H.A. and Krone, R.B. 1962. Experiments to determine modes of cohesive sediment transport in salt water. J. Geophys. Res., vol.67, ppl451-1461.
    • 38) Falconer, R.A. 1986. A Two-Dimensional mathematical model study of the nitrate levels in an inland natural basin. Proceedings of the international conference on water quality modelling in the inland natural environment, BHRA Fluid Engineering, Bournemouth, England, Paper Jl, pp325-344.
    • 39) Falconer, R.A. 1993. An introduction to nearly horizontal flow. In Coastal, Estuarial and Harbor Engineers' Reference Book, Ed., M.B. Abbott & W.A. Price, pp27-36, E&FN Spon Ltd, London.
    • 40) Falconer, R.A. and Cahyono, M., 1994. Numerical model study of water quality constituents in the Humber Estuary. Res. Rep., Dept, of Civ. Engrg., Univ. of Bradford, Bradford, England, 79.
    • 41) Falconer, R.A. and Chen, Y. 1991. An Improved Representation of Flooding and Drying and Wind Stress Effects in a Two-Dimensional Tidal Numerical Model. Proc. Inst. Civil Engineers, Part 2, Vol.91, pp659-678.
    • 42) Falconer, R.A. and Kashefipour, S. 1999. FASTER Model Reference Manual. EWMRC, Caridff University.
    • 43) Falconer, R.A. and Owens, P.H. 1990. Numerical modelling of suspended sediment fluxes in estuarine waters. Estuarine, Coastal and Shelf Science, vol.31, pp745-762.
    • 44) Falconer,R.A. and Lin, B. 1999. DIVAST Reference Manual. EWMRC, CardiffUniversity.
    • 45) Falconer,R.A., George, D.G. and Hall, P. 1991. Three-Dimensional Numerical Modelling of Wind Driven Circulation in a Shallow Homogeneous Lake. Journal of Hydrology, Vol. 124, pp59-79.
    • 46) Faust, M.A., aotaky, A.E. and Hargadon, M.T. 1975. Effect of physical parameters on the in situ survival of Escherichia coli MC- 6 in an estuarine environment. Appl. Microbiol. 30, pp800-806: 47) Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. 1996. From data mining to knowledge discovery: an overview. In “Advances in Knowledge Discovery and Data Mining”, AAAI Press and the MIT Press, ppl-36.
    • 48) Fischer, H.B. et al, 1979. Mixing and Dispersion in Inland and Coastal Waters, Academic Press, Inc., California.
    • 49) Flint, K.P. 1987. The long-term survival of Escherichia coli in river water. Journal of Applied Bacteriology, vol.63, pp261-270.
    • 50) Fujioka, R.S., Hashimoto, H.H. et al. 1981. Effect of sunlight on survival of indicator bacteria in seawater. Appl. Environ. Microbiol. Vol.41, pp690-696.
    • 51) Fujioka, R.S., Wu, C.M. and Oki, C. 1995. Assessing the Impact of an Ocean Sewage Outfall on Shoreline Water Quality. Proc. 6 8 thAnn. Conf. Water Environ. Fed. IV, ppl67-178.
    • 52) Gameson, A.L.H. 1984. Investigations of sewage discharges to some British coastal waters, chap. 8 , Bacterial Mortality, Part 1. Water Research Centre, Technical Report TR 201.
    • 53) Gameson, A.L.H. and Saxon, J.R. 1967. Field studies on effect of daylight on mortality of coliform bacteria. Water Research, Vol.l, pp279-295.
    • 54) Gerba, C.P. and McLeod, J.S. 1976. Effect of Sediments on the Survival of Escherichia coli in Marine Waters. Appl. Environ. Microbiol. Vol.32 (1), ppl 14-120.
    • 55) Ghinsberg, R.C., Bar Dov, L., Rogol, M., Sheinberg, Y., and Nitzan, Y. 1994. Monitoring of selected bacteria and fungi in sand and sea water along the Tel A w coast. Microbios 77, pp20-40.
    • 56) Glenn, S.M. and Grant, W.D. 1987. A suspended sediment stratification correction for combined wave and current flows. J. Geophys. Res., Vol.92, pp8244-8264.
    • 57) Gourmelon, M., Cillard, J. and Pommepuy, M. 1994. Visible light damage on E. coli in seawater: oxidative stress hypothesis. J. Appl. Bacteriol., vol.77, ppl05-l 12.
    • 58) Grimes, D.J. 1975. Release of sediment-bound fecal coliforms by dredging. Appl. Microbiol. Vol.29, p p l0 9 -lll.
    • 59) Grimes, D.J. 1980. Bacteriological water quality effects of hydraulically dredging contaminated Upper Mississippi River bottom sediment. Appl. Environ. Microbiol. Vol.39, pp782-789.
    • 60) Guillaud, J.F., Derrien, A., Gourmelon, M. and Pommepuy, M. 1997. T90 as a tool for engineers: Interest and Limits. Wat. Sci. Tech. 35(11-12), pp277-281.
    • 61) Hagen, S.C. and Parrish, D.M. 2002. bathymetric data set assimilation for the western north Atlantic tidal model domain, In “Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK”, Hydroinformatics 2002, Volumn Two. Alden Press, Osney Mead, Oxford, UK. ppl 191- 1196.
    • 62) Hanes, N.G. and Fragula, R. 1967. Effect of seawater concentration on survival of indicator bacteria. J.
    • Water Poll. Control Fed., vol.39, pp97-104.
    • 63) Hardina, C.M. and Fujioka, R.S. 1991. Soil: the environmental source of E. coli and enterococci in Hawaii's streams. Env. Toxicol. Wat. Qual. Vol.6 , ppl85-195.
    • 64) Harvey, R. W., Smith, R. L., and George, L. 1984. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer. Applied and Environmental Microbiology. 48, 1197-1202 65) Hawley, N. and Lesht, B.m., 1992. Sediment resuspension in lake St. Clair. Limnology Oceanogr.
    • 37(8), pp 1720-1737.
    • 6 6 ) Heaps, N.S., 1969. A two dimensional numerical sea model. Philosophical Transaction of Royal Society, A, 265, 93-137.
    • 67) Hendricks, C.W. 1970. Enteric bacteria metabolism of stream sediment elutes. Can. J. microbial.
    • Vol. 17, pp551-556.
    • 6 8 ) Hendricks, C.W. 1971. Increased Recovery of Salmonellae from Bottom Sediments versus Surface Waters. Appl. Microbial. Vol.21, pp379-380.
    • 69) Hendricks, C.W. 1972. Enteric bacteria growth rates in river water. Appl. Microbial. Vol.24, ppl6 8 - 174.
    • 70) Hendricks, C.W. and Morrison, S.M. 1967. Multiplication and growth of selected enteric bacteria in Clear Mountain stream water. Water Res. Vol. 1, pp567-576.
    • 71) Hood, M.A. and Ness, G.E. 1982. Survival of Vibrio cholerae and E. coli in estuarine waters and sediments. Appl. Environ. Microbiol. Vol.43, pp578-584.
    • 72) Howell, J.M., Coyne, M.S. and Cornelius, P.L. 1996. Effect of sediment particle size and temperature on faecal bacteria mortality-rates and the faecal coliform/faecal streptococci ratio. J. Environ. Qual.
    • Vol.25 (6 ), pp1216-1220.
    • 73) Hunter, C., McDonald, A. and Beven, C. 1992. Input of Faecal Coliform Bacteria to an Upland Stream Channel in the Yorkshire Dales. Water Resources Research. Vol.28, ppl869-1876.
    • 74) Jerke, N. 1999. Visual Basic 6 : The Complete Reference, The McGraw-Hill Companies, California.
    • 75) Jing, L. and Ridd, P.V. 1996. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. Coastal Engineering, vol.29, ppl69-186.
    • 76) Kandiah, A. 1974. Fundamental aspects of surface erosion of cohesive soils. PhD. Thesis, Univ.
    • 77) Kashefipour, S.M. and Falconer, R.A. 1999. Numerical modelling of suspended sediment fluxes in open channel flows. XXVIII LAHR Congress, August 1999, Graz, Australia.
    • 78) Kator, H. and Rhodes, M. 1994. Microbial and Chemical Indicators. In: Environmental indicators and shellfish safety, edited by Hackney C.R. and Pierson M.D., Chapman and Hall. London. pp30-91.
    • 79) Kay, D., Stapleton, C.M., Wyer, M.D., McDonald, A.T., et al., 2005. Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T90 values for modelling faecal indicators in recreational waters. Water Res. 39, 655-667.
    • 80) Kittrell, F. W. and Furfari, S.A. 1963. Observations of coliform bacteria in streams. J. Water Poll.
    • Control Fed., vol.35, ppl361-1385.
    • 81) Klock, J.W. 1971. Survival of coliform bacteria in wastewater treatment lagoons. J. Water Poll.
    • Control Fed., vol.43, pp2071-2083.
    • 82) Korhonen, L.K. and Martikainen, P.J. 1991. Survival of E. coli and Campylobacter jejuni in untreated and filtered lake water. Journal of Applied Bacteriology, Vol.71, pp379-382.
    • 83) Krone, R.B., 1962. Flume studies of the transport of sediment on estuarial shoaling processes. Report, Hydraulic Engineering Laboratory, University of California, Berkeley.
    • 84) Kuijper, C., Comelisse, J.M. and Winterwerp, J.C. 1989. Research on erosive properties of cohesive sediments. J. Geophys. Res. Vol.94 (CIO), ppl4341-14350.
    • 85) LaLiberte, P. and Grimes, D.J. 1982. Survival of Escherichia coli in Lake Bottom Sediment. Appl.
    • Environ. Microbiol. Vol.43, pp623-628.
    • 8 6 ) Lang, G., Schubert, R., et al. 1989. Data interpretation and numerical modelling of the mud and suspended sediment experiment 1985. J. Geophys. Res. Vol.94 (CIO), ppl4381-14393.
    • 87) Leonard, B.P. 1979. A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation. Computer Methods in Applied Mechanics and Engineering, Vol. 19, pp59-98.
    • 8 8 ) Lick, W. 1982. The transport of contaminants in the lakes. Ann. Rev. Earth Planet. Sci., Vol. 10 pp327- 353.
    • 89) Lick, W. 1986. Modelling the transport of fine-grained sediments in aquatic systems. The Science of the Total Environment, vol.55 pp219-228.
    • 90) Lin, B. and Falconer, R.A. 1995. Modelling sediment fluxes in estuarine waters using a curvilinear coordinate grid system. Estuarine, Coastal and Shelf Science, vol.41 pp413-428.
    • 91) Lin, B. and Falconer, R.A. 1997. Tidal Flow and Transport Modelling Using ULTIMATE QUICKEST Scheme. Journal of Hydraulic Engineering, Vol.123 (4), pp303-314.
    • 92) Lin, B., Kashefipour, S.M. et al. 2001. Modelling flow and water quality in estuarine and riverine waters: A dynamically linked 1-D and 2-D models approach. Proceedings of XXIX IAHR Congress, Theme B: Environmental Hydraulics, pp469-475.
    • Mehta, A.J. 1989. On estuarine cohesive sediment suspension behaviour. J. Geophys. Res., vol.94 (14), ppl4303-14314.
    • Mei, C.C., Fan, S.J. and Jin, K.R. 1997. Resuspension and transport of fine sediments by waves. J.
    • Geophys. Res. Vol.102 (C7), ppl5807-15821.
    • Miescier, J.J. and Cabelli, V.J. 1982. Enterococci and other microbial indicators in municipal wastewater effluents. J. Water Pollut. Control Fed. Vol.54, ppl599-1606.
    • Milne, D.P., Curran, J.C., and Wilson, L. 1986. Effects of sedimentation on removal of faecal coliform bacteria from effluents in estuarine water. Wat. Res. 20(12) pp 1493-1496.
    • Nix, P.G., Daykin M.M. and Vilkas, K.L. 1993. Sediment bags as an integrator of faecal contamination in aquatic systems. Water Res. Vol.27, ppl569-1576.
    • Obiri-Danso, K. and Johns, K. 1999. The effect of a new sewage treatment plant on faecal indicator numbers, Campylobacters and bathing water compliance in Morecambe Bay. J. Appl. Microbiol.
    • Vol.8 6 , pp603-614.
    • Obiri-Danso, K. and Johns, K. 2000. Intertidal sediments as reservoirs for hippurate negative Campylobacters, salmonellae and faecal indicators in three EU recognised bathing waters in North West England. Wat. Res. 34(2), pp519-527.
    • Odd, N.V.M. 1988. Mathematical modelling of mud transport in estuaries. In: Dronkers, J., van Leussen, W. (Eds), Physical Process in Estuaries. Springer, Berlin, pp503-531.
    • Orlob, G.T. (ed) 1982. Mathematical modelling of water quality. Wiley, Chichester.
    • Parthenaides, A. 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division.
    • ASCE91, (HY1).
    • Perillo, G.M. and Sequeira, M.E. 1989. Geomorphologic and sediment transport characteristics of the middle reach of the Bahia Blanca estuary (Argentina). J. Geophys. Res. Vol.94 (CIO), ppl4351- 14362.
    • Pike, E.B., Gameson, A.H.L. and Gould, D.J. 1970. Mortality of coliform bacteria in seawater samples in the dark. Rev. Int. Oceanogr. Med. Vol.18 (19), pp97-107.
    • Pommepuy, M., Guillaud, J.F., Dupray, E., Derrien, A., Guyader, F.Le and Conner, M. 1992.
    • Enteric Bacteria Survival Factors. Wat. Sei. Tech., vol.25 (12), pp93-103.
    • Prandle, D., Hargreaves, J.C. and etc. 2000. Tide, wave and suspended sediment modelling on an open coast - Holdemess. Coastal Engineering. 41, pp 237-267.
    • Qiang, J., Ryne, R.D. and Habib, S. 2000. Fortran implementation of object-oriented design in parallel beam dynamics simulations. Computer Physics Communications, vol.133, pp 18-33.
    • 1998. River Water Quality Modelling: I. State of the Art. Water Science and Technology, Vol.38 (11), pp237-244.
    • Rhodes, M.W. and Kator, H. 1988. Survival of E. coli and Salmonella spp. in estuarine environment. Appl. Environ. Microbiol. Vol.54, pp2902-2907.
    • Richman, M. 1996. Sewer separation lowers faecal coliform levels. Water Environ. Technol. Vol.8 , pp2 0 -2 2 .
    • Rittenberg, S.C., Mittwer, T. and Ivler, O. 1958. Coliform bacteria in sediment around three marine sewage outfalls. Limnol. Oceanogr. Vol.3, ppl01-108.
    • Roll, B.M. and Fujioka, R.S. 1997. Sources of Faecal Indicator Bacteria in a Brackish, Tropical Stream and Their Impact on Recreational water Quality. Wat. Sci. Tech. Vol.35, ppl79-186.
    • Rudolfs, W., Falk, L.L. and Ragotzkie, R.A. 1950. Literature review on the occurrence and survival of enteric pathogenic and relative organisms in soil, water, sewage, sludge, and in vegetation. Sewage Ind. Wastes, Vol.22, ppl261-1281.
    • Salomon, J.C. and Pommepuy, M. 1990. Mathematical model of bacterial contamination of the Morlaix Estuary (France). Wat. Res. Vol.24 (8 ), pp983-994.
    • Sanford, L.P., and Halka, J.P. 1993. Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from upper Cheaspeake Bay. Mar. Geol. 114, pp37-57.
    • Sanford, L.P., and Maa, J.P.Y. 2001. A unified erosion formulation for fine sediments. Marine Geology. 179(2001), pp 9-23.
    • Sanfrod, L.P., Panageotou, W., and Halka, J.P. 1991. Tidal resuspension of sediments in northern Cheaspeake Bay. Mar. Geol. 97, pp83-103.
    • Savage, W.G. 1905. Bacteriological examination of tidal mud as an index of pollution of the river.
    • Journal of Hygiene. Vol.5, ppl46-174.
    • Savic, D. A. & Walters, G. A. 1999. Hydroinformatics, data mining and maintenance of UK water networks. Journal o f Anti-Corrosion Methods and Materials, 46(6), 415-425.
    • Savic, D., Davidson, J., Davis, R. 1999. Data mining and knowledge discovery for the water industry, CCWI 1999 “Water Industry Systems: Modelling and Optimization Applications”, Research Studies Press, Baldock, UK, Vol.2, ppl55-165.
    • Schneider, D.I. 1999. An Introduction to Programming Using Visual Basic 6.0, 4th Ed., PrenticeHall, Upper Saddle River, New Jersey 07458.
    • Self, R.F.L., Nowell, A.R.M., and Jumars, P.A. 1989. Factors controlling critical shears for deposition and erosion of individual grains. Marine Geology. 8 6 , ppl81-199.
    • Serrano, E., Moreno, B., Solaun, M., Aurrekoetxea, J.J. and Ibarluzea, J. 1998. The Influence of Stapleton, C. M., Crowther, J. M., Falconer, R. A., Francis, C. A., Humphrey, N., Kashefipour, S.
    • M., Kay, D., Lin, B., Paul, N., Watkins, J., Wyer, M. D., and Yang, L., 2004. Modelling the Fate and Transport of Particles in Water (Phase II). R & D Project Report 10208. Environment Agency, Bristol.
    • Uncles, R.J. and Stephens, J.A. 1989. Distributions of suspended sediment at high water in macrotidal estuary. J. Geophys. Res. vol.94 (CIO), ppl4395-14405.
    • Valiela, I., Alber, M. and LaMontagne, M. 1991. Fecal Coliform Loadings and Stocks in Buttermilk Bay, Massachusetts, USA, and Management Implications. Environmental Management, Vol. 15 (5), pp659-674.
    • Valiela, I., Alber, M. and Lmontagne, M. 1991. Faecal Coliform Loadings and Stocks in Buttermilk Bay, Massachusetts, USA, and Management Implications. Environmental Management. 15(5), pp 659- 674.
    • Van Donsel, D.J. and Geldreich, E.E. 1971. Relationship of Salmonellae to faecal coliforms in bottom sediments. Wat. Res. Vol.5, ppl079-1087.
    • van Rijn, L.C. 1984a. Sediment transport. Part 1: Bed load transport. Journal of hydraulic engineering. 110, ppl431-1456 van Rijn, L.C. 1984b. Sediment transport. Part 2: Suspended load transport. Journal of hydraulic engineering. 110, pp1631 -1641 Wait, D.A., and Sobsey, M.D. 2001. Comparative Survivial of Enteric Viruses and Bacteria in Atlantic Ocean seawater. Wat. Sei. Tech. 43(12), ppl39-142.
    • Wakamann, S.A. and Vartiovaara, U. 1938. The adsorption of bacteria by marine bottom. Boil.
    • Bull. Vol.74, pp56-68.
    • Weiss, C.M. 1951. Adsorption of E. coli on river and estuarine silts. Sewage Ind. Wastes, Vol.23, pp227-237.
    • Weiyan, T. 1992. Shallow Water Hydrodynamics. Elsevier, Amsterdam.
    • Wu, Y., Falconer, R.A. and Uncles, R.J. 1999. Modelling of water flows and cohesive sediment fluxes in the Humber Estuary. Marine Pollution Bulletin, Elsevier Science, Vol. 37, No. 3-7, ppl82- 189.
    • Yang, L., Lin, B., Falconer, R.A. and Kashefipour, S.M. 2002. Integration of a 1-D model with object-oriented methodology. Environmental Modelling and Software. Vol.17, pp693-701.
    • Ziegler, C.K. and Lick, W. 1988. The transport of fine-grained sediments in Shallow waters.
    • Environ. Geol. Water Sci. Vol.l 1 (1) ppl23-132.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article