Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Graham, RS; Olmsted, PD (2010)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
We derive a kinetic Monte Carlo algorithm to simulate flow-induced nucleation in polymer melts. The crystallisation kinetics are modified by both stretching and orientation of the amorphous chains under flow, which is modelled by a recent non-linear tube theory. Rotation of the crystallites under flow is modelled by a simultaneous Brownian dynamics simulation. Our kinetic Monte Carlo approach is highly efficient at simulating nucleation and is tractable even at low under-cooling. The simulations predict enhanced nucleation under both transient and steady state shear. Furthermore the model predicts the growth of shish-like elongated nuclei for sufficiently fast flows, which grow by a purely kinetic mechanism.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 A. Keller and H. Kolnaar, in Processing of Polymers, ed. H. Meijer, Wiley-VCH, Weinheim, 1997, vol. 18, p. 189.
    • 2 I. Coccorullo, R. Pantani and G. Titomanlio, Macromolecules, 2008, 41(23), 9214-9223.
    • 3 S. Kimata, T. Sakurai, Y. Nozue, T. Kasahara, N. Yamaguchi, T. Karino, M. Shibayama and J. A. Kornfield, Science, 2007, 316, 1014-1017.
    • 4 B. S. Hsiao, L. Yang, R. H. Somani, C. A. Avila-Orta and L. Zhu, Phys. Rev. Lett., 2005, 94, 117802.
    • 5 L. Balzano, N. Kukalyekar, S. Rastogi, G. W. M. Peters and J. C. Chadwick, Phys. Rev. Lett., 2008, 100, 048302.
    • 6 M. Seki, D. W. Thurman, J. P. Oberhauser and J. A. Kornfield, Macromolecules, 2002, 35, 2583-2594.
    • 7 E. L. Heeley, C. M. Fernyhough, R. S. Graham, P. D. Olmsted, N. J. Inkson, J. Embery, D. J. Groves, T. C. B. McLeish, A. C. Morgovan, F. Meneau, W. Bras and A. J. Ryan, Macromolecules, 2006, 39(15), 5058-5071.
    • 8 O. O. Mykhaylyk, P. Chambon, R. S. Graham, J. P. A. Fairclough, P. D. Olmsted and A. J. Ryan, Macromolecules, 2008, 41(6), 1901-1904.
    • 9 H. Zuidema, G. W. M. Peters and H. E. H. Meijer, Macromol. Theory Simul., 2001, 10, 447- 460.
    • 10 S. Coppola, N. Grizzuti and P. L. Maffettone, Macromolecules, 2001, 34, 5030-5036.
    • 11 R. Zheng and P. Kennedy, J. Rheol., 2004, 48(4), 823-842.
    • 12 L. Jarecki, in Progress in Understanding of Polymer Crystallization, ed. G. Reiter and G. R. Strobl, Springer, Berlin, 2007, vol. 714 of Lecture Notes in Physics, pp. 65-86.
    • 13 J. van Meerveld, M. Hu€tter and G. Peters, J. Non-Newtonian Fluid Mech., 2007, 150, 177- 196.
    • 14 N. Waheed, M. J. Ko and G. C. Rutledge, Polymer, 2005, 46, 8689-8702.
    • 15 M. J. Ko, N. Waheed, M. S. Lavine and G. C. Rutledge, J. Chem. Phys., 2004, 121, 2823- 2832.
    • 16 W. Hu, D. Frenkel and V. Mathot, Macromolecules, 2002, 35, 7172-7174.
    • 17 W. Hu and D. Frenkel, Adv. Polym. Sci., 2005, 191, 1-35.
    • 18 J. Zhang and M. Muthukumar, J. Chem. Phys., 2007, 126, 234904.
    • 19 I. Dukovski and M. Muthukumar, J. Chem. Phys., 2003, 118, 6648-6655.
    • 20 D. Auhl, J. Ramirez, A. E. Likhtman, P. Chambon and C. Fernyhough, J. Rheol., 2008, 52(3), 801.
    • 21 J. Bent, L. R. Hutchings, R. W. Richards, T. Gough, R. Spares, P. D. Coates, I. Grillo, O. G. Harlen, D. J. Read, R. S. Graham, A. E. Likhtman, D. J. Groves, T. M. Nicholson and T. C. B. McLeish, Science, 2003, 301, 1691-1695.
    • 22 J. Lukkien, J. Segers, P. Hilbers, R. Gelten and A. Jansen, Phys. Rev. E, 1998, 58, 2598- 2610.
    • 23 D. T. Gillespie, J. Phys. Chem., 1977, 81(25), 2340-2361.
    • 24 J. P. K. Doye and D. Frenkel, Phys. Rev. Lett., 1998, 81, 2160-2163.
    • 25 R. S. Graham, A. E. Likhtman, T. C. B. McLeish and S. T. Milner, J. Rheol., 2003, 47(5), 1171-1200.
    • 26 M. W. Collis, A. K. Lele, M. R. Mackley, R. S. Graham, D. J. Groves, A. E. Likhtman, T. M. Nicholson, O. G. Harlen, T. C. B. McLeish, L. R. Hutchings, C. M. Fernyhough and R. N. Young, J. Rheol., 2005, 49, 501-522.
    • 27 R. S. Graham and T. C. B. McLeish, J. Non-Newtonian Fluid Mech., 2008, 150(1), 11-18.
    • 28 A. Blanchard, R. S. Graham, M. Heinrich, W. Pyckhout-Hintzen, D. Richter, A. E. Likhtman, T. C. B. McLeish, D. J. Read, E. Straube and J. Kohlbrecher, Phys. Rev. Lett., 2005, 95, 166001.
    • 29 R. S. Graham, J. Bent, L. R. Hutchings, R. W. Richards, D. J. Groves, J. Embery, T. M. Nicholson, T. C. B. McLeish, A. E. Likhtman, O. G. Harlen, D. J. Read, T. Gough, R. Spares, P. D. Coates and I. Grillo, Macromolecules, 2006, 39(7), 2700-2709.
    • 30 R. S. Graham, J. Bent, N. Clarke, L. R. Hutchings, R. W. Richards, T. Gough, D. M. Hoyle, O. G. Harlen, I. Grillo, D. Auhl and T. C. B. McLeish, Soft Matter, 2009, 5, 2383-2389.
    • 31 A. Tezel, L. G. Leal and T. C. B. McLeish, Macromolecules, 2005, 38, 1451-1455.
    • 32 A. K. Tezel, J. P. Oberhauser, R. S. Graham, K. Jagannathan, T. C. B. McLeish and L. G. Leal, J. Rheol., 2009, in press.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article