LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhu, X.; Jin, X.; You, Lihua (2015)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, ComputingMethodologies_COMPUTERGRAPHICS
arxiv: Computer Science::Graphics
In this paper, we propose a local convolution surface approximation approach for quickly modelling tree structures with pleasing visual effect. Using our proposed local convolution surface approximation, we present a tree modelling scheme to create the structure of a tree with a single high-quality quad-only mesh. Through combining the strengths of the convolution surfaces, subdivision surfaces and GPU, our tree modelling approach achieves high efficiency and good mesh quality. With our method, we first extract the line skeletons of given tree models by contracting the meshes with the Laplace operator. Then we approximate the original tree mesh with a convolution surface based on the extracted skeletons. Next, we tessellate the tree trunks represented by convolution surfaces into quad-only subdivision surfaces with good edge flow along the skeletal directions. We implement the most time-consuming subdivision and convolution approximation on the GPU with CUDA, and demonstrate applications of our proposed approach in branch editing and tree composition.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Akkouche, S., Galin, E.: Adaptive implicit surface polygonization using marching triangles. Comput. Graph. Forum 20(2), 67-80 (2001)
    • 2. Alexe, A., Barthe, L., Cani, M.P., Gaildrat, V.: Shape modelling by sketching using convolution surfaces. In: In Pacific Graphics (Short Papers) (2005)
    • 3. Alexe, A., Barthe, L., Gaildrat, V., Cani, M.: A sketchbased modelling system using convolution surfaces. In: Technical Report IRIT - 2005-17-R
    • 4. Alexe, A., Gaildrat, V., Barthe, L.: Interactive modelling from sketches using spherical implicit functions. In: Proceedings of the 3rd international conference on Computer graphics, virtual reality, visualisation and interaction in Africa, AFRIGRAPH '04, pp. 25-34. ACM, New York, NY, USA (2004)
    • 5. Angelidis, A., Jepp, P., Cani, M.P.: Implicit modelling with skeleton curves: Controlled blending in contact situations. In: Proceedings of the Shape Modeling International 2002 (SMI'02), SMI '02, pp. 137-144. IEEE Computer Society, Washington, DC, USA (2002)
    • 6. Au, O., Tai, C., Chu, H., Cohen-Or, D., Lee, T.: Skeleton extraction by mesh contraction. In: ACM SIGGRAPH 2008, SIGGRAPH'08, pp. 44:1-44:10. ACM, New York, NY, USA (2008)
    • 7. Bernhardt, A., Pihuit, A., Cani, M.P., Barthe, L.: Matisse: painting 2d regions for modeling free-form shapes. In: EUROGRAPHICS Workshop on SketchBased Interfaces and Modeling, SBIM'08, pp. 57-64. Eurographics Association, Annecy, France (2008)
    • 8. Bloomenthal, J.: An implicit surface polygonizer. Graphics Gems IV pp. 324-349 (1994)
    • 9. Bloomenthal, J., Shoemake, K.: Convolution surfaces. Comput. Graph. 25(4), 251-256 (1991)
    • 10. Bottino, A., Nuij, W., Overveld, K.v.: How to shrinkwrap a sadle-point: an algorithm for the adaptive triangulation of iso-surfaces with arbitrary topology. Proceedings Eindhoven Implicit Surfaces Workshop (1996)
    • 11. Bucksch, A., Lindenbergh, R., Menenti, M.: Skeltre - fast skeletonization for imperfect point cloud data of botanic trees. In: EG Workshop on 3D Object Retrieval, pp. 13- 27 (2009)
    • 12. Bunnell, M.: GPU Gems 2. ch. Adaptive Tessellation of Subdivision Surfaces with Displacement Mapping. Addison Wesley Professional, Boston, USA (2005)
    • 13. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian-based contraction. In: Proc. of IEEE Conf. on Shape Modeling and Applications, SMI'10, pp. 187-197. IEEE Computer Society, Washington, DC, USA (2010)
    • 14. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350-355 (1978)
    • 15. Chen, X., Neubert, B., Xu, Y., Deussen, O., Kang, S.: Sketch-based tree modeling using markov random field. ACM Trans. Graph. 27(5), 1-9 (2008)
    • 16. Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organs. Springer, New York, NY, USA (2005)
    • 17. Doo, D., Sabin, M.: Behavior of recursive division surfaces near extraodinary points. Comput. Aided Des. 10(6), 356-360 (1978)
    • 18. Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schonherr, S.: On the design of cgal a computational geometry algorithms library. Software Pract. Exper. 30(11), 1167-1202 (2000)
    • 19. Galbraith, C., Mndermann, L., Wyvill, B.: Implicit visualization and inverse modeling of growing trees. In: Comput. Graph. Forum, vol. 23, pp. 351-360 (2004)
    • 20. Gourmel, O., Barthe, L., Cani, M.P., Wyvill, B., Bernhardt, A., Paulin, M., Grasberger, H.: A gradientbased implicit blend. ACM Trans. Graph. 32(2), 12:1- 12:12 (2013)
    • 21. Hart, J.C., Baker, B.: Implicit modeling of tree surfaces. Implicit Surfaces '96, pp. 143-152 (1996)
    • 22. Hubert, E.: Convolution surfaces based on polygons for infinite and compact support kernels. Graph. Models 74(1), 1-13 (2012)
    • 23. Hubert, E., Cani, M.P.: Convolution surfaces based on polygonal curve skeletons. J. Symb. Comput. 47(6), 680 - 699 (2012)
    • 24. Ji, Z., Liu, L., Wang, Y.: B-mesh: a modeling system for base meshes of 3d articulated shapes. Comput. Graph. Forum 29(7), 2169-2178 (2010)
    • 25. Jin, X., Tai, C.: Analytical methods for polynomial weighted convolution surfaces with various kernels. Comput. Graph. 26(3), 437-447 (2002)
    • 26. Jin, X., Tai, C.: Convolution surfaces for arcs and quadratic curves with a varying kernel. Vis. Comput. 18(8), 530-546 (2002)
    • 27. Jin, X., Tai, C., Zhang, H.: Implicit modeling from polygon soup using convolution. Vis. Comput. 25(3), 279-288 (2009)
    • 28. Kettner, L.: √3 subdivision. In: ACM SIGGRAPH 2000, SIGGRAPH'00, pp. 103-112. ACM, New York, NY, USA (2000)
    • 29. Lin, J., Jin, X., Wang, C.C.: Fusion of disconnected mesh components with branching shape. Vis. Comput. 26(6- 8), 1017-1025 (2010)
    • 30. Lindenmayer, A.: Mathematical models for cellular interactions in development ii. simple and branching filaments with two-sided inputs. J. Theor. Biol. 18(3), 300-315 (1968)
    • 31. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-sana, J.: Automatic reconstruction of tree skeletal structures from point clouds. In: ACM SIGGRAPH Asia 2010, SIGGRAPH ASIA'10, pp. 151:1-151:8. ACM, New York, NY, USA (2010)
    • 32. Lluch, J., Viv, R., Monserrat, C.: Modelling tree structures using a single polygonal mesh. Graph. Models 66(2), 89-101 (2004)
    • 33. Longay, S., Runions, A., Boudon, F., Prusinkiewicz, P.: Treesketch: interactive procedural modeling of trees on a tablet. In: Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling, SBIM '12, pp. 107-120. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2012)
    • 34. Loop, C.: Smooth subdivision surfaces based on triangles. Master's Thesis, Departent of Mathematics, University of Utah (1987)
    • 35. Loop, C., Schaefer, S., Ni, T., Castano, I.: Approximating subdivision surfaces with gregory patches for hardware tesselation. ACM Trans. Graph. 28(5), 1-9 (2009)
    • 36. Mar´echal, N., Galin, E., Gu´erin, E., Akkouche, S.: Component-based model synthesis for low polygonal models. In: Proceedings of Graphics Interface 2010, GI '10, pp. 217-224. Canadian Information Processing Society, Toronto, Ont., Canada, Canada (2010)
    • 37. McCormack, J., Sherstyuk, A.: Creating and rendering convolution surfaces. Comput. Graph. Forum 17(2), 113- 120 (1998)
    • 38. Neubert, B., Franken, T., Deussen, O.: Approximate image-based tree-modeling using particle flows. ACM Trans. Graph. 26(3), 88-95 (2007)
    • 39. Okabe, M., Owada, S., Igarashi, T.: Ineractive design of botanical trees using freehand sketches and examplebased editing. Comput. Graph. Forum 24(3), 487-496 (2005)
    • 40. Overveld, K.v., Wyvill, B.: Shrinkwrap: an efficient adaptive algorithm for triangulating an iso-surface . Vis. Comput. 20(6), 362-369 (2004)
    • 41. Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Mech, R., Prusinkiewicz, P.: Self-organizing tree models for image synthesis. In: ACM SIGGRAPH 2009, SIGGRAPH'09, pp. 1-10. ACM, New York, NY, USA (2009)
    • 42. Patney, A., Ebeida, M.S., Owens, J.D.: Parallel viewdependent tessellation of catmull-clark subdivision surfaces. In: Proceedings of the Conference on High Performance Graphics 2009, HPG'09, pp. 99-108. ACM, New York, NY, USA (2009)
    • 43. Pirk, S., Stava, O., Kratt, J., Said, M.A.M., Neubert, B., Mˇech, R., Benes, B., Deussen, O.: Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31(4), 50:1-50:10 (2012)
    • 44. Reche-Martinez, A., Martin, I., Drettakis, G.: Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23(3), 720-727 (2004)
    • 45. Schmidt, R., Singh, K.: meshmixer: an interface for rapid mesh composition. In: ACM SIGGRAPH 2010 Talks, SIGGRAPH'10, pp. 6:1-6:1. ACM, New York, NY, USA (2010)
    • 46. Schwarz, M., Stamminger, M.: Fast gpu-based adaptive tessellation with cuda. Comput. Graph. Forum 28(2), 365-374 (2009)
    • 47. Sherstyuk, A.: Kernel functions in convolution surfaces: a comparative analysis. Vis. Comput. 15(4), 171-182 (1999)
    • 48. Sovakar, A., Kobbelt, L.: Api design for adaptive subdivision schemes. Comput. Graph. 28(1), 67-72 (2004)
    • 49. Tai, C., Zhang, H., Fong, C.: Prototype modeling from sketched silhouettes based on convolution surfaces. Comput. Graph. Forum 23(4), 71-83 (2004)
    • 50. Talton, J.O., Lou, Y., Lesser, S., Duke, J., Mech, R., Koltun, V.: Metropolis procedural modeling. ACM Trans. Graph. 30(2), 11:1-11:14 (2011)
    • 51. Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L.: Single image tree modeling. ACM Trans. Graph. 27(5), 1-7 (2008)
    • 52. Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. In: ACM SIGGRAPH 2007, SIGGRAPH'07, pp. 87-93. ACM, New York, NY, USA (2007)
    • 53. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.P., Rohmer, D., Wyvill, B., Gourmel, O., Paulin, M.: Implicit skinning: real-time skin deformation with contact modeling. ACM Trans. Graph. 32(4), 125:1- 125:12 (2013)
    • 54. Wither, J., Boudon, F., Cani, M.P., Godin, C.: Structure from silhouettes: a new paradigm for fast sketch-based design of trees. Comput. Graph. Forum 28(2), 541-550 (2009)
    • 55. Wyvill, G., McPheeters, C., Wyvill, B.: Data Structure for Soft Objects. Vis. Comput. 2(4), 227-234 (1986)
    • 56. Xia, J., Garcia, I., He, Y., Xin, S.Q., Patow, G.: Editable polycube map for gpu-based subdivision surfaces. In: Symposium on Interactive 3D Graphics and Games 2011, I3D'11, pp. 151-158. ACM, New York, NY, USA (2011)
    • 57. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristicbased modeling of laser-scanned trees. ACM Trans. Graph. 26(4), 19-31 (2007)
    • 58. Zanni, C., Bernhardt, A., Quiblier, M., Cani, M.P.: Scale-invariant integral surfaces. Comput. Graph. Forum DOI 10.1111/cgf.12199. URL http://dx.doi.org/10.1111/cgf.12199
    • 59. Zhu, X., Guo, X., Jin, X.: Efficient polygonization of tree trunks modeled by convolution surfaces. SCI. CHINA Ser. F 56(3), 1-12 (2013)
    • 60. Zhu, X., Jin, X., Liu, S., Zhao, H.: Analytical solutions for sketch-based convolution surface modeling on the gpu. Vis. Comput. 28(11), 1115-1125 (2012)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article