LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Widera, Darius; Klenke, Christin; Nair, Deepak; Heidbreder, Meike; Malkusch, Sebastian; Sibarita, Jean-Baptiste; Choquet, Daniel; Kaltschmidt, Barbara; Heilemann, Mike; Kaltschmidt, Christian (2016)
Publisher: Society of Photo-Optical Instrumentation Engineers
Languages: English
Types: Article
Subjects: Special Section on Super-resolution Microscopy of Neural Structure and Function
Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The calibre of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. In this study we quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient (Dmean) in neurites from 0.12 ± 0.05 µm2/s to 0.61 ± 0.03 µm2/s after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from 10.9 ± 1.9 to 15 ± 4.9 µm/s, whereas a velocity increase from 9 ± 1.3 to 14 ± 3 µm/s was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. M. P. Mattson et al., “Roles of nuclear factor kappaB in neuronal survival and plasticity,” J. Neurochem. 74(2), 443-456 (2000).
    • 2. V. Fridmacher et al., “Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection,” J. Neurosci. 23(28), 9403-9408 (2003).
    • 3. M. K. Meffert et al., “NF-kappa B functions in synaptic signaling and behavior,” Nat. Neurosci. 6(10), 1072-1078 (2003).
    • 4. B. Kaltschmidt, D. Widera, and C. Kaltschmidt, “Signaling via NFkappaB in the nervous system,” Biochim. Biophys. Acta 1745(3), 287-299 (2005).
    • 5. M. K. Meffert and D. Baltimore, “Physiological functions for brain NFkappaB,” Trends Neurosci. 28(1), 37-43 (2005).
    • 6. M. P. Mattson and M. K. Meffert, “Roles for NF-kappaB in nerve cell survival, plasticity, and disease,” Cell Death Differ. 13(5), 852-860 (2006).
    • 7. B. Kaltschmidt and C. Kaltschmidt, “NF-kappaB in the nervous system,” Cold Spring Harbor Perspect. Biol. 1(3), a001271 (2009).
    • 8. C. Kaltschmidt, B. Kaltschmidt, and P. A. Baeuerle, “Brain synapses contain inducible forms of the transcription factor NF-kappa B,” Mech. Dev. 43(2-3), 135-147 (1993).
    • 9. C. Kaltschmidt et al., “Constitutive NF-kappa B activity in neurons,” Mol. Cell. Biol. 14(6), 3981-3992 (1994).
    • 10. C. Kaltschmidt, B. Kaltschmidt, and P. A. Baeuerle, “Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons,” Proc. Natl. Acad. Sci. U. S. A. 92(21), 9618-9622 (1995).
    • 11. H. Wellmann, B. Kaltschmidt, and C. Kaltschmidt, “Retrograde transport of transcription factor NF-kappa B in living neurons,” J. Biol. Chem. 276(15), 11821-11829 (2001).
    • 12. T. Suzuki et al., “Presence of NF-kB-like and IkB-like immunoreactivities in postsynaptic densities,” NeuroReport 8(13), 2931-2935 (1997).
    • 13. P. J. Meberg et al., “Gene expression of the transcription factor NF-kB in hippocampus: regulation by synaptic activity,” Mol. Brain Res. 38(2), 179-190 (1996).
    • 14. A. Salles, A. Romano, and R. Freudenthal, “Synaptic NF-kappa B pathway in neuronal plasticity and memory,” J. Physiol. Paris 108(4-6), 256-262 (2014).
    • 15. B. Kaltschmidt and C. Kaltschmidt, “NF-KappaB in long-term memory and structural plasticity in the adult mammalian brain,” Front. Mol. Neurosci. 8, 69 (2015).
    • 16. C. L. Howe, “Modeling the signaling endosome hypothesis: why a drive to the nucleus is better than a (random) walk,” Theor. Biol. Med. Model. 2, 43 (2005).
    • 17. T. H. Ch'ng and K. C. Martin, “Synapse-to-nucleus signaling,” Curr. Opin. Neurobiol. 21(2), 345-352 (2010).
    • 18. S. Hanz and M. Fainzilber, “Integration of retrograde axonal and nuclear transport mechanisms in neurons: implications for therapeutics,” Neuroscientist 10(5), 404-408 (2004).
    • 19. R. B. Vallee et al., “Dynein: an ancient motor protein involved in multiple modes of transport,” J. Neurobiol. 58(2), 189-200 (2004).
    • 20. S. Maday et al., “Axonal transport: cargo-specific mechanisms of motility and regulation,” Neuron 84(2), 292-309 (2014).
    • 21. S. Millecamps and J. P. Julien, “Axonal transport deficits and neurodegenerative diseases,” Nat. Rev. Neurosci. 14(3), 161-176 (2013).
    • 22. I. Mikenberg et al., “Transcription factor NF-kappaB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons,” PLoS One 2(7), e589 (2007).
    • 23. C. K. Shrum, D. Defrancisco, and M. K. Meffert, “Stimulated nuclear translocation of NF-kappaB and shuttling differentially depend on dynein and the dynactin complex,” Proc. Natl. Acad. Sci. U. S. A. 106(8), 2647-2652 (2009).
    • 24. I. Mikenberg et al., “TNF-alpha mediated transport of NF-kappaB to the nucleus is independent of the cytoskeleton-based transport system in non-neuronal cells,” Eur. J. Cell Biol. 85(6), 529-536 (2006).
    • 25. G. J. Schutz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73(2), 1073-1080 (1997).
    • 26. A. Furstenberg and M. Heilemann, “Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores,” Phys. Chem. Chem. Phys. 15(36), 14919-14930 (2013).
    • 27. S. Manley et al., “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155- 157 (2008).
    • 28. M. Heidbreder et al., “TNF-alpha influences the lateral dynamics of TNF receptor I in living cells,” Biochim. Biophys. Acta 1823(10), 1984-1989 (2012).
    • 29. P. J. Zessin, A. Sporbert, and M. Heilemann, “PCNA appears in two populations of slow and fast diffusion with a constant ratio throughout S-phase in replicating mammalian cells,” Sci. Rep. 6, 18779 (2016).
    • 30. D. Nair et al., “Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95,” J. Neurosci. 33(32), 13204-13224 (2013).
    • 31. J. B. Sibarita, “High-density single-particle tracking: quantifying molecule organization and dynamics at the nanoscale,” Histochem. Cell Biol. 141(6), 587-595 (2014).
    • 32. J. Wiedenmann et al., “EosFP, a fluorescent marker protein with UVinducible green-to-red fluorescence conversion,” Proc. Natl. Acad. Sci. U. S. A. 101(45), 15905-15910 (2004).
    • 33. P. Opazo et al., “CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin,” Neuron 67(2), 239- 252 (2010).
    • 34. D. R. Ure and R. B. Campenot, “Retrograde transport and steady-state distribution of 125I-nerve growth factor in rat sympathetic neurons in compartmented cultures,” J. Neurosci. 17(4), 1282-1290 (1997).
    • 35. W. Song et al., “Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity,” Nat. Med. 17(3), 377-382 (2011).
    • 36. D. D. Ginty and R. A. Segal, “Retrograde neurotrophin signaling: Trking along the axon,” Curr. Opin. Neurobiol. 12(3), 268-274 (2002).
    • 37. R. B. Campenot and B. L. MacInnis, “Retrograde transport of neurotrophins: fact and function,” J. Neurobiol. 58(2), 217-229 (2004).
    • 38. C. Klenke et al., “Hsc70 is a novel interactor of NF-kappaB p65 in living hippocampal neurons,” PLoS One 8(6), e65280 (2013).
    • 39. I. Izeddin et al., “Wavelet analysis for single molecule localization microscopy,” Opt. Express 20(3), 2081-2095 (2012).
    • 40. V. Racine et al., “Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells,” J. Microsc. 225(Pt 3), 214-228 (2007).
    • 41. V. Racine et al., “Multiple-target tracking of 3-D fluorescent objects based on simulated annealing,” in 3rd IEEE Int. Symp. on Biomedical Imaging: Nano to Macro, 2006, pp. 1020-1023 (2006).
    • 42. U. Endesfelder et al., “A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment,” Histochem. Cell Biol. 141(6), 629-638 (2014).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article