LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rylance, Jamie; Kankwatira, Anstead; Nelson, David E.; Toh, Evelyn; Day, Richard B; Lin, Huaiying; Gao, Xiang; Dong, Qunfeng; Sodergren, Erica; Weinstock, George M; Heyderman, Robert S; Twigg III, Homer L; Gordon, Stephen (2016)
Publisher: BioMed Central
Journal: BMC Microbiology
Languages: English
Types: Article
Subjects: Respiratory microbiome, Alveolar macrophage, wa_754, Research Article, wh_650, Household air pollution, wf_600, Petrobacter, qw_4
Background\ud Domestic combustion of biomass fuels, such as wood, charcoal, crop residue and dung causes Household Air Pollution (HAP). These inhaled particulates affect more than half of the world’s population, causing respiratory problems such as infection and inflammatory lung disease. We examined whether the presence of black carbon in alveolar macrophages was associated with alterations in the lung microbiome in a Malawi population. \ud \ud Methods\ud Bronchoalveolar lavage samples from 44 healthy adults were sequenced using 16S rDNA amplification to assess microbial diversity, richness and relative taxa abundance. Individuals were classified as high or low particulate exposure as determined by questionnaire and the percentage of black carbon within their alveolar macrophages.\ud \ud Results\ud Subjects in the low and high particulate groups did not differ in terms of source of fuels used for cooking or lighting. There was no difference in alpha or beta diversity by particulate group. Neisseria and Streptococcus were significantly more abundant in samples from high particulate exposed individuals, and Tropheryma was found less abundant. Petrobacter abundance was higher in people using biomass fuel for household cooking and lighting, compared with exclusive use of electricity.\ud \ud Conclusions\ud Healthy adults in Malawi exposed to higher levels of particulates have higher abundances of potentially pathogenic bacteria (Streptococcus, Neisseria) within their lung microbiome. Domestic biomass fuel use was associated with an uncommon environmental bacterium (Petrobacter) associated with oil-rich niches.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspect. 2002;110(11):1057-68.
    • 2. Torres-Duque C, Maldonado D, Perez-Padilla R, Ezzati M, Viegi G. Biomass fuels and respiratory diseases: a review of the evidence. Proc Am Thorac Soc. 2008;5(5):577-90.
    • 3. Scott JA, Hall AJ, Muyodi C, Lowe B, Ross M, Chohan B, Mandaliya K, Getambu E, Gleeson F, Drobniewski F, et al. Aetiology, outcome, and risk factors for mortality among adults with acute pneumonia in Kenya. Lancet. 2000;355(9211):1225-30.
    • 4. Pandey MR, Boleij JS, Smith KR, Wafula EM. Indoor air pollution in developing countries and acute respiratory infection in children. Lancet. 1989;1(8635):427-9.
    • 5. Mortimer K, Gordon SB, Jindal SK, Accinelli RA, Balmes J, Martin 2nd WJ. Household air pollution is a major avoidable risk factor for cardiorespiratory disease. Chest. 2012;142(5):1308-15.
    • 6. Lim S, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990- 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224.
    • 7. Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Chen H, Berger KI, Goldring RM, Rom WN, Blaser MJ, et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome. 2013;1(1):19.
    • 8. Twigg 3rd HL, Morris A, Ghedin E, Curtis JL, Huffnagle GB, Crothers K, Campbell TB, Flores SC, Fontenot AP, Beck JM, et al. Use of bronchoalveolar lavage to assess the respiratory microbiome: signal in the noise. Lancet Respir Med. 2013;1(5):354-6.
    • 9. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187(10):1067-75.
    • 10. Salinas MB, Fardeau ML, Cayol JL, Casalot L, Patel BK, Thomas P, Garcia JL, Ollivier B. Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol. 2004;54(Pt 3):645-9.
    • 11. Zhou F, Mbadinga SM, Liu JF, Gu JD, Mu BZ. Evaluation of microbial community composition in thermophilic methane-producing incubation of production water from a high-temperature oil reservoir. Environ Technol. 2013;34(17-20):2681-9.
    • 12. Gordon SB, Malamba R, Mthunthama N, Jarman ER, Jambo K, Jere K, Zijlstra EE, Molyneux ME, Dennis J, French N. Inhaled delivery of 23-valent pneumococcal polysaccharide vaccine does not result in enhanced pulmonary mucosal immunoglobulin responses. Vaccine. 2008;26(42):5400-6.
    • 13. Rylance J, Fullerton DG, Scriven J, Aljurayyan AN, Mzinza D, Barrett S, Wright AK, Wootton DG, Glennie SJ, Baple K, et al. Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages. Am J Respir Cell Mol Biol. 2015;52(5):584-93.
    • 14. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537-41.
    • 15. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261-7.
    • 16. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological). 1995;57(1):289-300.
    • 17. Faith DP. Phylogenetic pattern and the quantification of organismal biodiversity. Philos Trans R Soc Lond B Biol Sci. 1994;345(1311):45-58.
    • 18. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228-35.
    • 19. Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22(7):1-19.
    • 20. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. Vegan: community ecology package. R package version 2.3-0. 2015.
    • 21. Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83(4):557-74.
    • 22. Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62(1):245-53.
    • 23. Kulkarni N, Pierse N, Rushton L, Grigg J. Carbon in airway macrophages and lung function in children. N Engl J Med. 2006;355(1):21-30.
    • 24. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One. 2011; 6(2):e16384.
    • 25. Charlson ES, Bittinger K, Chen J, Diamond JM, Li H, Collman RG, Bushman FD. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS One. 2012;7(9):e42786.
    • 26. Segal LN, Blaser MJ. A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc. 2014;11 Suppl 1:S21-27.
    • 27. Twigg Iii HL, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, Day RB, Lin H, Gao X, Dong Q et al: Effect of Advanced HIV Infection on the Respiratory Microbiome. Am J Respir Crit Care Med. 2016;194(2):226-35.
    • 28. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One. 2012;7(10):e47305.
    • 29. Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med. 2010;181(1):47-53.
    • 30. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ. 2008;86(5):390-398C.
    • 31. Greenberg D, Givon-Lavi N, Broides A, Blancovich I, Peled N, Dagan R. The contribution of smoking and exposure to tobacco smoke to Streptococcus pneumoniae and Haemophilus influenzae carriage in children and their mothers. Clin Infect Dis. 2006;42(7):897-903.
    • 32. Mushtaq N, Ezzati M, Hall L, Dickson I, Kirwan M, Png KM, Mudway IS, Grigg J. Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter. J Allergy Clin Immunol. 2011;127(5): 1236-42. e1232.
    • 33. Glennie SJ, Banda D, Mulwafu W, Nkhata R, Williams NA, Heyderman RS. Regulation of naturally acquired mucosal immunity to Streptococcus pneumoniae in healthy Malawian adults and children. PLoS One. 2012; 7(12):e51425.
    • 34. Cardenas PA, Cooper PJ, Cox MJ, Chico M, Arias C, Moffatt MF, Cookson WO. Upper airways microbiota in antibiotic-naive wheezing and healthy infants from the tropics of rural Ecuador. PLoS One. 2012;7(10):e46803.
    • 35. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. Meningococcal disease. N Engl J Med. 2001;344(18):1378-88.
    • 36. Simmons G, Martin D, Stewart J, Jones N, Calder L, Bremner D. Carriage of Neisseria meningitidis among household contacts of patients with meningococcal disease in New Zealand. Eur J Clin Microbiol Infect Dis. 2001;20(4):237-42.
    • 37. El Ahmer OR, Essery SD, Saadi AT, Raza MW, Ogilvie MM, Weir DM, Blackwell CC. The effect of cigarette smoke on adherence of respiratory pathogens to buccal epithelial cells. FEMS Immunol Med Microbiol. 1999;23(1):27-36.
    • 38. Lozupone C, Cota-Gomez A, Palmer BE, Linderman DJ, Charlson ES, Sodergren E, Mitreva M, Abubucker S, Martin J, Yao G, et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am J Respir Crit Care Med. 2013;187(10):1110-7.
    • 39. Adar SD, Huffnagle GB, Curtis JL. The respiratory microbiome: an underappreciated player in the human response to inhaled pollutants? Ann Epidemiol. 2016;26(5):355-9.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT | Wellcome Trust Clinical PhD ...
  • WT | Malawi-Liverpool-Wellcome Tr...
  • NIH | Indiana Clinical and Transl...
  • NIH | Lung Microbiome and Pulmona...

Cite this article