LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
De Martino, Domitilla; Matt, Giorgio; Mukai, Koji; Bonnet-Bidaud, Jean-Marc; Burwitz, V.; Gaensicke, B. T. (Boris T.); Haberl, F.; Mouchet, M. (2006)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: QB

Classified by OpenAIRE into

arxiv: Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics
Aims. XMM-Newton observations to determine for the first time the broad-band X-ray properties of the faint, high galactic latitude intermediate polar UUCol are presented.\ud Methods. We performed X-ray timing analysis in different energy ranges of the EPIC cameras, which reveals the dominance of the 863 s white dwarf rotational period. The spin pulse is strongly energy dependent. Weak variabilities at the beat 935 s and at the 3.5 h orbital periods are also observed, but the orbital modulation is detected only below 0.5 keV. Simultaneous UV and optical photometry shows that the spin pulse is anti-phased with respect to the hard X-rays. Analysis of the EPIC and RGS spectra reveals\ud the complexity of the X-ray emission, which is composed of a soft 50 eV black–body component and two optically thin emission components at 0.2 keV and 11 keV strongly absorbed by dense material with an equivalent hydrogen column density of 1023 cm−2 that partially (50%) covers the X-ray source.\ud Results. The complex X-ray and UV/optical temporal behaviour indicates that accretion occurs predominantly (∼80%) via a disc with a partial contribution (∼20%) directly from the stream. The main accreting pole dominates at high energies whilst the secondary pole mainly contributes in the soft X-rays and at lower energies. The bolometric flux ratio of the soft-to-hard X-ray emissions is found to be consistent with the prediction of the standard accretion shock model. We find the white dwarf in UUCol accretes at a low rate and possesses a low magnetic moment. It is therefore unlikely that UUCol will evolve into a moderate field strength polar, so that the soft X-ray intermediate polars still remain an enigmatic small group of magnetic cataclysmic variables.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anders, E., & Grevesse, N. 1989, GeCoA, 53, 197 Beardmore, A. P., Mukai, K., Norton, A. J., Osborne, J. P., & Hellier, C. 1998, MNRAS, 297, 337
    • Burwitz, V., & Reinsch, K. 2001, AIPC, 599, 522 Burwitz, V., Reinsch, K., Beuermann, K., & Thomas, H.-C. 1996, A&A, 310, L25
    • Cumming, A. 2002, MNRAS, 333, 589
    • Evans, P. A., & Hellier, C. 2004, MNRAS, 353, 447 de Martino, D., Matt, G., Mukai, K., et al. 2001, A&A, 377, 499 de Martino, D., Matt, G., Belloni, T., et al. 2004, A&A, 415, 1009 den Herder, J. W., Brinkman, A. C., Kahn, S. M., et al. 2001, A&A, 365, L7 Haberl, F., & Motch, C. 1995, A&A, 297, L37 Haberl, F., Motch, C., & Zickgraf, F.-J. 2002, A&A, 387, 201 Hellier, C. 1995, ASP Conf. Ser., 85, 185
    • Jansen, F., Lumb, D., Altieri, B., et al. 2001, A&A, 365, L1 Mason, K. O., Breeveld, A., Much, R., et al. 2001, A&A, 365, L36 Mukai, K., Ishida, M., & Osborne, J. P. 1994, PASJ, 46, L87 Norton, A. J., & Watson, M. G. 1989, MNRAS, 237, 715 Norton, A. J., Beardmore, A. P., & Taylor, P. 1996, MNRAS, 280, 937 Norton, A. J., Hellier, C., Beardmore, A. P., et al. 1997, MNRAS, 289, 362 Norton, A. J., Beardmore, A. P., Allan, A., & Hellier, C., 1999, A&A, 347, 293 Norton, A. J., Wynn, G. A., & Somerscales, R. V. 2004, ApJ, 614, 349 Porquet, D., Mewe, R., Dubau, J., et al. 2001, A&A, 376, 1113 Rosen, S. R., Mason, K. O., & Cordova, F. A. 1988, MNRAS, 231, 549 Strüder, L., Briel, U., Dennerl, K., et al. 2001, A&A, 365, L18 Staude, A., Schwope, A. D., Krumpe, M., et al. 2003, A&A, 406, 253 Turner, M. J. L., Abbey, A., Arnaud, M., et al. 2001, A&A, 365, L27 Warner, B. 1995, Cataclsymic Variables (Cambridge: Cambridge Univ. Press) Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914 Woelk, U., & Beuermann, K. 1992, A&A, 256, 498
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article