Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Frigg, Roman (2004)
Languages: English
Types: Article
Subjects: PHI
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alekseev, V. M. & Yakobson, M. V. [1981]: 'Symbolic Dynamics and Hyperbolic Dynamical Systems', Physics Reports, 75, pp. 287-325.
    • Arnold, V. I. & Avez, A. [1968]: Ergodic Problems of Classical Mechanics, New York, NY & Amsterdam: W. A. Benjamin.
    • Batterman, R. [1993]: 'Defining Chaos', Philosophy of Science, 60, pp. 43-66.
    • Batterman, R. & White, H. [1996]: 'Chaos and Algorithmic Complexity', Foundations of Physics, 26, pp. 307-336.
    • Belot, G. & Earman, J. [1997]: 'Chaos out of Order: Quantum Mechanics, the Correspondence Principle and Chaos', Studies in the History and Philosophy of Modern Physics, 28, pp. 147-82.
    • Billingsley, P. [1965]: Ergodic Theory and Information, New York, NY: Wiley.
    • Brudno, A. A. [1978]: 'The Complexity of the Trajectory of a Dynamical System', Russian Mathematical Surveys, 33, pp. 197-8.
    • Carroll, L. [1998]: Alice's Adventures in Wonderland and Through the Looking-Glass, London: Penguin.
    • Cornfeld, I. P., Fomin, S. V. & Sinai, Y. G. [1982]: Ergodic Theory, Berlin & New York, NY: Springer.
    • Cornfeld, I. P. & Sinai, Y. G. [1980]: 'Entropy Theory of Dynamical Systems', in Y. G. Sinai (ed.), 1980, Dynamical Systems II. Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, Berlin & New York, NY: Springer, pp. 36-58.
    • Cover, T. M. & Thomas, J. M. [1991]: Elements of Information Theory, New York, NY & Chichester: Wiley.
    • Earman, J. [1986]: A Primer on Determinism, Dordrecht: Reidel.
    • Eckmann, J.-P. & Ruelle, D. [1985]: 'Ergodic Theory of Chaos and Strange Attractors', Review of Modern Physics, 57, Part I, pp. 617-656.
    • Keller, G. [1998]: Equilibrium States in Ergodic Theory, Cambridge: Cambridge University Press.
    • Lichtenberg, A. J. & Liebermann, M. A. [1992]: Regular and Chaotic Dynamics, 2nd edn, Berlin & New York, NY: Springer.
    • Man~e´, R. [1983]: Ergodic Theory and Differentiable Dynamics, Berlin & New York: Springer.
    • Nadkarni, M. G. [1998]: Basic Ergodic Theory, Basel: Birkha€user.
    • Ott, E. [1993]: Chaos in Dynamical Systems, Cambridge: Cambridge University Press.
    • Parry, W. [1981]: Topics in Ergodic Theory, Cambridge: Cambridge University Press.
    • Petersen, Karl [1983]: Ergodic Theory. London and New York, NY: Cambridge UP.
    • Reichl, L. E. [1992]: The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, Berlin & New York, NY: Springer.
    • Rudolph, D. J. [1990]: Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces, Oxford: Clarendon Press.
    • Schuster, H. G. [1988]: Deterministic Chaos: An Introduction, 2nd edn, Weinheim: Physik Verlag.
    • Shannon, C. E. & Weaver, W. [1949]: The Mathematical Theory of Communication, Urbana, Chicago, IL & London: University of Illinois Press.
    • Smith, P. [1998]: Explaining Chaos, Cambridge: Cambridge University Press.
    • Tabor, M. [1989]: Chaos and Integrability in Nonlinear Dynamics, New York, NY: John Wiley & Sons.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article