Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rimberg, A.J.; Blencowe, M.P.; Armour, A.D.; Nation, P.D. (2014)
Publisher: IOP Publishing
Languages: English
Types: Article
Subjects: Condensed Matter - Mesoscale and Nanoscale Physics, Quantum Physics

Classified by OpenAIRE into

arxiv: Physics::Optics
We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor (cCPT) coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Haroche S and Raimond J M 2006 Exploring the Quantum (Oxford: Oxford University Press)
    • [2] Aspelmeyer M, Kippenberg T and Marquardt F 2013 Cavity optomechanics arXiv:1303.0733
    • [3] Poot M and van der Zant H S J 2012 Phys. Rep. 511 273-355
    • [4] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359-63
    • [5] Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89-92
    • [6] Purdy T P, Peterson R W and Regal C A 2013 Science 339 801-4
    • [7] Safavi-Naeni A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M and Painter O 2013 Nature 500 185-9
    • [8] Murch K W, Moore K L, Gupta S and Stamper-Kurn D M 2008 Nat. Phys. 4 561-4
    • [9] Brennecke F, Ritter S, Donner T and Esslingen T 2008 Science 322 235-8
    • [10] Bochmann J, Vainsencher A, Awschalom D D and Cleland A N 2013 Nat. Phys. 9 712-6
    • [11] Palomaki T A, Teufel J D, Simmonds R W and Lehnert K W 2013 Science 342 710-3
    • [12] Ludwig M, Kubala B and Marquardt F 2008 New J. Phys. 10 095013
    • [13] Nunnenkamp A, Børkje K and Girvin S M 2011 Phys. Rev. Lett. 107 063602
    • [14] Nation P D 2013 Phys. Rev. A 88 053828
    • [15] Lörch N, Qian J, Clerk A, Marquardt F and Hammerer K 2014 Phys. Rev. X 4 011015
    • [16] Heikkilä T T, Massel F, Tuorila J, Khan R and Sillanpää M A 2013 Enhancing optomechanical coupling via the Josephson effect arXiv:1311.3802
    • [17] Blencowe M P and Buks E 2007 Phys. Rev. B 76 014511
    • [18] Tuominen M T, Hergenrother J M, Tighe T S and Tinkham M 1992 Phys. Rev. Lett. 69 1997
    • [19] Matveev K A, Gisselfält M, Glazman L I, Jonson M and Shekhter R I 1993 Phys. Rev. Lett. 70 2940
    • [20] Eiles T M and Martinis J M 1994 Phys. Rev. B 50 627
    • [21] Joyez P, Lafarge P, Filipe A, Esteve D and Devoret M H 1994 Phys. Rev. Lett. 72 2458
    • [22] Joyez P 1995 The single cooper pair transistor: a macroscopic quantum system PhD Thesis University of Paris
    • [23] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162-7
    • [24] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
    • [25] Blencowe M P, Rimberg A J and Armour A D 2012 Quantum-classical correspondence for a dc-biased cavity resonator-Cooper-pair transistor system Fluctuating Nonlinear Oscillators ed M Dykman (Oxford: Oxford University Press) pp 33-58
    • [26] Chen F, Li J, Armour A D, Brahimi E, Stettenheim J, Sirois A J, Simmonds R W, Blencowe M P and Rimberg A J 2013 A single-cooper-pair josephson laser arXiv:1311.2042
    • [27] Chen F 2013 The Cavity-embedded-cooper pair transistor PhD Thesis Dartmouth College, Hanover, NH
    • [28] LaHaye M D, Buu O, Camarota B and Schwab K C 2004 Science 304 74-77
    • [29] Naik A, Buu O, LaHaye M D, Armour A D, Clerk A A, Blencowe M P and Schwab K C 2006 Nature 443 193-6
    • [30] Sillanpää M A, Roschier L and Hakonen P J 2004 Phys. Rev. Lett. 93 066805
    • [31] Sillanpää M 2005 Quantum device applications of mesoscopic superconductivity PhD Thesis Helsinki University of Technology Espoo
    • [32] Verbridge S S, Parpia J M, Reichenbach R B, Bellan L M and Craighead H G 2006 J. Appl. Phys. 99 124304
    • [33] Verbridge S S, Craighead H G and Parpia J M 2008 Appl. Phys. Lett. 91 013112
    • [34] Hertzberg J B, Rocheleau T, Nkudum T, Savva M, Clerk A A and Schwab K C 2009 Nat. Phys. 6 213-7
    • [35] Rocheleau T, Nkudum T, Macklin C, Hertzberg J B, Clerk A A and Schwab K C 2010 Nature 463 72-75
    • [36] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204-8
    • [37] Jacobs K, Tombesi P, Collett M J and Walls D F 1994 Phys. Rev. A 49 1961
    • [38] Eichler C, Bozyigit D, Lang C, Steffen L, Fink J and Wallraff A 2011 Phys. Rev. Lett. 106 220503
    • [39] Eichler C, Bozyigit D and Wallraff A 2012 Phys. Rev. A 86 032106
    • [40] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299-332
    • [41] Hradil Z, Řeháček J, Fiurášek J and Ježek M 2004 Maximum-likelihood methods in quantum mechanics Quantum State Estimation ed M G A Paris and J Řeháček (Heidelberg: Springer) chapter 3 pp 59-112
    • [42] Hradil Z, Mogilevtsev D and Řeháček J 2006 Phys. Rev. Lett. 96 230401
    • [43] Caves C M 1982 Phys. Rev. D 26 1817-39
    • [44] Ribeill G J, Hover D, Chen Y F, Zhu S and McDermott R 2011 J. Appl. Phys. 110 103901
    • [45] Hover D, Chen Y F, Ribeill G J, Zhu S, Sendelback S and McDermott R 2012 Appl. Phys. Lett. 100 063503
    • [46] Jacobs K and Landhal A J 2009 Phys. Rev. Lett. 103 067201
    • [47] Rodrigues D A and Armour A D 2010 Phys. Rev. Lett. 104 053601
    • [48] Rips S, Kiffner M, Wilson-Rae I and Hartmann M J 2012 New J. Phys. 14 023042
    • [49] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
    • [50] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
    • [51] Nunnenkamp A, Børkje K and Girvin S M 2012 Phys. Rev. A 85 051803(R)
    • [52] Chen Y 2013 J. Phys. B: At. Mol. Opt. Phys. 46 104001
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article