LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Capewell, Adam Daniel; Grasby, T. J.; Whall, Terry E.; Parker, Evan H. C. (2002)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC, TK
Identifiers:doi:10.1063/1.1529308
Silicon germanium (SiGe) virtual substrates of final germanium composition x = 0.50 have been fabricated using solid-source molecular beam epitaxy with a thickness of 2 µm. A layer structure that helps limit the size of dislocation pileups associated with the modified Frank–Read dislocation multiplication mechanism has been studied. It is shown that this structure can produce lower threading dislocation densities than conventional linearly graded virtual substrates. Cross-sectional transmission electron microscopy shows the superior quality of the dislocation network in the graded regions with a lower rms roughness shown by atomic force microscopy. X-ray diffractometry shows these layers to be highly relaxed. This method of Ge grading suggests that high-quality virtual substrates can be grown considerably thinner than with conventional grading methods.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 ~1974!.
    • 2 E. A. Fitzgerald and S. B. Samavedam, Thin Solid Films 294, 3 ~1997!.
    • 3 E. A. Stach, K. W. Schwarz, R. Hull, F. M. Ross, and R. M. Tromp, Phys. Rev. Lett. 84, 947 ~2000!.
    • 4 F. K. Legoues, B. S. Meyerson, J. F. Morar, and P. D. Kirchner, J. Appl. Phys. 71, 4230 ~1992!.
    • 5 M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66, 724 ~1995!.
    • 6 P. M. Mooney, J. L. Jordan-Sweet, J. O. Chu, and F. K. LeGoues, Appl. Phys. Lett. 66, 3642 ~1995!.
    • 7 J. M. Hartmann, B. Gallas, R. Ferguson, J. Fernadez, J. Zhang, and J. J. Harris, Semicond. Sci. Technol. 15, 362 ~2000!.
    • 8 J. Michel, E. A. Fitzgerald, Y.-H. Xie P. S. Silverman, M. Morse, and L. C. Kimerling, J. Electron. Mater. 21, 1099 ~1992!.
    • 9 D. G. Schimmel, J. Electrochem. Soc. 123, 734 ~1976!.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article