LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hart, HC; Palmer, AR; Hall, DA (2002)
Publisher: Elsevier (not including Cell Press)
Languages: English
Types: Article
Subjects:
Previous neuroimaging studies generally demonstrate a growth in the cortical response with an increase in sound level. However, the details of the shape and topographic location of such growth remain largely unknown. One limiting methodological factor has been the relatively sparse sampling of sound intensities. Additionally, most studies have either analysed the entire auditory cortex without differentiating primary and non-primary regions or have limited their analyses to Heschl's gyrus (HG). Here, we characterise the pattern of responses to a 300-Hz tone presented in 6-dB steps from 42 to 96 dB sound pressure level as a function of its sound level, within three anatomically defined auditory areas; the primary area, on HG, and two non-primary areas, consisting of a small area lateral to the axis of HG (the anterior lateral area, ALA) and the posterior part of auditory cortex (the planum temporale, PT). Extent and magnitude of auditory activation increased non-linearly with sound level. In HG, the extent and magnitude were more sensitive to increasing level than in ALA and PT. Thus, HG appears to have a larger involvement in sound-level processing than does ALA or PT.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article