Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Christensen, Kim; Papavassiliou, Dario; de Figueiredo, Alexandre; Franks, Nigel R.; Sendova-Franks, Ana B. (2015)
Publisher: The Royal Society
Journal: Journal of the Royal Society Interface
Languages: English
Types: Article
Subjects: QA, universality, controlled experiment, 1004, ant, 181, social systems, behaviour, Research Articles, 120
Prediction for social systems is a major challenge. Universality at the social level has inspired a unified theory for urban living but individual variation makes predicting relationships within societies difficult. Here, we show that in ant societies individual average speed is higher when event duration is longer. Expressed as a single scaling function, this relationship is universal because for any event duration an ant, on average, moves at the corresponding average speed except for a short acceleration and deceleration at the beginning and end. This establishes cause and effect within a social system and may inform engineering and control of artificial ones.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • USA 104, 7301 - 7306. (doi:10.1073/pnas.
    • Batty M. 2008 The size, scale, and shape of cities. Science
    • 319, 769 - 771. (doi:10.1126/science.1151419)
    • Bettencourt LMA, West GB. 2010 A unified theory of
    • urban living. Nature 467, 912 - 913. (doi:10.1038/
    • 467912a)
    • Stamps JA, Briffa M, Biro PA. 2012 Unpredictable
    • variability (IIV). Anim. Behav. 83, 1325 - 1334.
    • (doi:10.1016/j.anbehav.2012.02.017)
    • Maye A, Hsieh CH, Sugihara G, Brembs B. 2007
    • Order in spontaneous behavior. PLoS ONE 2, e443.
    • (doi:10.1371/journal.pone.0000443)
    • Anteneodo C, Chialvo DR. 2009 Unraveling the
    • fluctuations of animal motor activity. Chaos 19,
    • 033123. (doi:10.1063/1.3211189)
    • Brembs B. 2011 Towards a scientific concept of free
    • 278, 930 - 939. (doi:10.1098/rspb.2010.2325)
    • Bazazi S, Bartumeus F, Hale JJ, Couzin ID. 2012
    • Biol. 8, e1002498. (doi:10.1371/journal.pcbi.
    • 11. Proekta A, Banavar JR, Maritan A, Pfaff DW. 2012 Scale invariance in the dynamics of spontaneous behavior. Proc. Natl Acad. Sci. USA 109, 10 564 - 10 569. (doi:10.1073/pnas.1206894109)
    • 12. Nepomnyashchikh VA. 2012 Variability in invertebrate behavior and the problem of free will. Biol. Bull. Rev. 3, 406 - 411. (doi:10.1134/S2079086413050083)
    • 13. Hsieh W-H et al. 2014 Simulated shift work in rats perturbs multiscale regulation of locomotor activity. J. R. Soc. Interface 11, 20140318. (doi:10.1098/rsif. 2014.0318)
    • 14. Mitchell M. 2009 Complexity: a guided tour. New York, NY: Oxford University Press.
    • 15. Ho¬®lldobler B, Wilson EO. 1994 Journey to the ants: a story of scientific exploration. Cambridge, MA: The Belknap Press of Harvard University Press.
    • 16. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E. 2001 Self-organization in biological systems. Princeton, NJ: Princeton University Press.
    • 17. Peters O, Hertlein C, Christensen K. 2002 A complexity view of rainfall. Phys. Rev. Lett. 88, 018701. (doi:10.1103/PhysRevLett.88.018701)
    • 18. Peters O, Neelin JD. 2006 Critical phenomena in atmospheric precipitation. Nat. Phys. 2, 393 - 396. (doi:10.1038/nphys314)
    • 19. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. 2012 Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3, 15 : 1. (doi:10.3389/fphys.2012. 00015)
    • 20. Lulham A. 2007 Bristol University. See http://www. cs.bris.ac.uk/~lulham/.
    • 21. Flyvbjerg H, Petersen HG. 1989 Error estimates on averages of correlated data. J. Chem. Phys. 91, 461 - 466. (doi:10.1063/1.457480)
    • 22. Franks NR, Dornhaus A, Best CS, Jones EL. 2006 Decision making by small and large house-hunting ant colonies: one size fits all. Anim. Behav. 72, 611 - 616. (doi:10.1016/j.anbehav.2005.11.019)
    • 23. Franks NR, Wilby A, Silverman BW, Tofts C. 1992 Self-organizing nest construction in ants: sophisticated building by blind bulldozing. Anim. Behav. 44, 357 - 375. (doi:10.1016/0003- 3472(92)90041-7)
    • 24. Shannon CE. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27, 379 - 423. (doi:10.1002/j.1538-7305.1948.tb01338.x)
    • 25. Baptista MS, Rubinger RM, Viana ER, Sartorelli JC, Parlitz U, Grebogi C. 2012 Mutual information rate and bounds for it. PLoS ONE 7, e46745. (doi:10. 1371/journal.pone.0046745)
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article