LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Santos Carballal, David; Du, Zhimei; King, Helen E.; de Leeuw, Nora (2016)
Publisher: RSC Publishing
Languages: English
Types: Article
Subjects: QD
We have studied the adsorption of three organic molecules onto different surfaces of goethite α−FeO(OH) using atomistic simulation techniques. New interatomic potentials for the interaction between goethite and the organic molecules were developed. In the majority of cases the organic molecules were found capable of forming a coordinate bond via their carbonyl oxygen atom with a surface iron ion. In addition, weaker hydrogen-bonds were formed between the organic molecules and the surfaces. The largest adsorption energies were obtained for the modes of adsorption where the organic molecules bridged or spanned the periodic grooves or dips present on the goethite surfaces, thus forming several interactions between the molecule and the surface. Among all adsorbates studied, the hydroxamic acid molecule in the eclipsed conformation releases the largest adsorption energy when it interacts with goethite surfaces, followed by the staggered conformations of hydroxyethanal and methanoic acid molecules. The adsorption energies are in the range of −60.0 to −186.4 kJ∙mol−1. Due to the surface structure, as well as the flexibility and size of hydroxamic acid and hydroxyethanal, in most cases these adsorbate molecules lose their planarity with respect to the structure of the isolated molecules. We found that the replacement of pre-adsorbed water by the organic adsorbates is an exothermic process on all the goethite surfaces studied. The removal by sorption onto iron particles of humic and fulvic acids, the major substituents of natural organic matter (NOM) that pollutes aquifers and soils, is corroborated by our calculations of the adsorption of surfactants with the same functional groups to the surfaces of oxidised iron particles.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • a Graduate Global Excellence Award and an Overseas Research 23 R. E. Saichek and K. R. Reddy, Crit. Rev. Environ. Sci. Scholarship from the UCL Industrial Doctorate Centre in Technol., 2005, 35, 115-192.
    • Molecular Modelling and Materials Science. N. H. d. L. is 24 R. Armishaw, R . P. Bardos, R. M. Dunn, J. M. Hill, M. Pearl, grateful to the Royal Society for the provision of an Industry T. Rampling and P. A. Wood, Review of Innovative Fellowship. All data created during this research is openly Contaminated Soil Clean-Up Processes, Warren Springs, available from the University of Cardiff Research Portal at http:// Stevenage, 1992.
    • dx.doi.org/10.17035/d.2016.0008219810. 25 N. H. de Leeuw and T. G. Cooper, Geochim. Cosmochim. Acta, 2007, 71, 1655-1673.
    • 26 K. D. Kwon and J. D. Kubicki, Langmuir, 2004, 20, 9249-9254.
    • References 27 A. T. Stone, A. Torrents, J. Smolen, D. Vasudevan and J. Hadley, Environ. Sci. Technol., 1993, 27, 895-909. 1 R. M. Cornell and U. Schwertmann, The Iron Oxides, Wiley- 28 E. M. Cooper and D. Vasudevan, J. Colloid Interface Sci., 2009, VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2nd edn, 333, 85-96.
    • 2003. 29 M. V. Biber and W. Stumm, Environ. Sci. Technol., 1994, 28, 2 S. L. S. Stipp, M. Hansen, R. Kristensen, M. F. Hochella, 763-768.
    • L. Bennedsen, K. Dideriksen, T. Balic-Zunic, D. L´eonard 30 K. Hanna, S. Martin, F. Quil`es and J.-F. Boily, Langmuir, and H.-J. Mathieu, Chem. Geol., 2002, 190, 321-337. 2014, 30, 6800-6807. 3 C. L. Chun, R. M. Hozalski and W. A. Arnold, Environ. Sci. 31 Y. S. Hwang, J. Liu, J. J. Lenhart and C. M. Hadad, J. Colloid Technol., 2005, 39, 8525-8532. Interface Sci., 2007, 307, 124-134. 4 P. J. Shea, T. A. Machacek and S. D. Comfort, Environ. Pollut., 32 M. Lindegren, J. S. Loring and P. Persson, Langmuir, 2009, 2004, 132, 183-188. 25, 10639-10647. 5 S. F. O'Hannesin and R. W. Gillham, Ground Water, 1998, 36, 33 C. R. Evanko and D. A. Dzombak, J. Colloid Interface Sci., 164-170. 1999, 214, 189-206. 6 G. A. Waychunas, C. S. Kim and J. F. Baneld, J. Nanopart. 34 L. S. Balistrieri and J. W. Murray, Geochim. Cosmochim. Acta, Res., 2005, 7, 409-433. 1987, 51, 1151-1160. 7 S. R. Kanel, B. Manning, L. Charlet and H. Choi, Environ. Sci. 35 M. A. Ali and D. A. Dzombak, Environ. Sci. Technol., 1996, 30, Technol., 2005, 39, 1291-1298. 1061-1071. 8 X. Li and W. Zhang, Langmuir, 2006, 22, 4638-4642. 36 J.-F. Boily, P. Persson and S. Sjo¨berg, Geochim. Cosmochim. 9 J. A. Mielczarski, G. M. Atenas and E. Mielczarski, Appl. Acta, 2000, 64, 3453-3470.
    • Catal., B, 2005, 56, 289-303. 37 C. F. Whitehead, R. F. Carbonaro and A. T. Stone, Aquat. 10 Z. Chen, X. Jin, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Geochem., 2015, 21, 99-121.
    • Interface Sci., 2011, 363, 601-607. 38 T. A. Kendall, M. F. Hochella Jr and U. Becker, Chem. Geol., 11 S. J. T. Pollard, M. Lythgo and R. Duarte-Davidson, in 2005, 216, 17-35.
    • Assessment and Reclamation of Contaminated Land, ed. R. E. 39 C. R. Evanko and D. A. Dzombak, Environ. Sci. Technol., 1998, Hester and R. M. Harrison, The Royal Society of 32, 2846-2855.
    • Chemistry, Cambridge, 2001, pp. 1-20. 40 K. Lalonde, A. Mucci, A. Ouellet and Y. G´elinas, Nature, 2012, 12 W. Rulkens, R. Tichy and J. T. C. Grotenhuis, Water Sci. 483, 198-200.
    • Technol., 1998, 37, 27-35. 41 L. Weng, W. H. van Riemsdijk, L. K. Koopal and T. Hiemstra, 13 C. Nathanail and R. Bardos, Reclamation of Contaminated Environ. Sci. Technol., 2006, 40, 7494-7500.
    • Land, Wiley, Chicester, 2004. 42 L. Weng, W. H. Van Riemsdijk and T. Hiemstra, J. Colloid 14 J. Scullion, Naturwissenschaen, 2006, 93, 51-65. Interface Sci., 2007, 314, 107-118. 15 A. C. Singer, C. J. van der Gast and I. P. Thompson, Trends 43 S. Kang and B. Xing, Langmuir, 2008, 24, 2525-2531.
    • Biotechnol., 2005, 23, 74-77. 44 J. Greathouse, K. Johnson and H. Greenwell, Minerals, 2014, 16 T. Gentry, C. Rensing and I. Pepper, Crit. Rev. Environ. Sci. 4, 519-540.
    • Technol., 2004, 34, 447-494. 45 B. Gu, J. Schmitt, Z. Chen, L. Liang and J. F. McCarthy, 17 T. Jong and D. L. Parry, Chemosphere, 2005, 60, 254-265. Geochim. Cosmochim. Acta, 1995, 59, 219-229. 18 C. N. Mulligan, R. N. Yong and B. F. Gibbs, Eng. Geol., 2001, 46 D. Mkhonto, P. E. Ngoepe, T. G. Cooper and N. H. de Leeuw, 60, 371-380. Phys. Chem. Miner., 2006, 33, 314-331. 19 J. Aguilar, P. Bouza, C. Dorronsoro, E. Fern´andez, 47 G. W. Watson, E. T. Kelsey, N. H. de Leeuw, D. J. Harris and J. Fern´andez, I. Garc´ıa, F. Mart´ın and M. Simo´n, Soil Use S. C. Parker, J. Chem. Soc., Faraday Trans., 1996, 92, 433-438.
    • Manage., 2004, 20, 451-453. 48 M. Born and K. Huang, Dynamical theory of crystal lattices, 20 M. Shin, S. F. Barrington, W. D. Marshall and J.-W. Kim, Oxford Classic Texts, Clarendon Press, Oxford, 1988.
    • Chemosphere, 2005, 58, 735-742. 49 D. Parry, Surf. Sci., 1975, 49, 433-440. 21 G. Park, H.-S. Shin and S.-O. Ko, J. Environ. Sci. Health, Part A: 50 D. Parry, Surf. Sci., 1976, 54, 195.
    • Toxic/Hazard. Subst. Environ. Eng., 2005, 40, 881-897. 51 R. Fletcher and C. M. Reeves, Comput. J., 1964, 7, 149-154. 22 J. A. Adams and K. R. Reddy, Groundwater Monit. Rem., 2003, 52 M. J. Norgett and R. Fletcher, J. Phys. C: Solid State Phys., 23, 85-94. 1970, 3, L190-L192. 53 B. Dick and A. Overhauser, Phys. Rev., 1958, 112, 90-103. 68 N. H. de Leeuw and T. G. Cooper, J. Mater. Chem., 2003, 13, 54 G. V. Lewis and C. R. A. Catlow, J. Phys. C: Solid State Phys., 93-101.
    • 1985, 18, 1149-1161. 69 N. Almora-Barrios and N. H. de Leeuw, Langmuir, 2010, 26, 55 P. S. Baram and S. C. Parker, Philosophical Magazine Part B, 14535-14542.
    • 1996, 73, 49-58. 70 N. Almora-Barrios and N. H. De Leeuw, Cryst. Growth Des., 56 K. Schro¨der, J. Sauer, M. Leslie, C. R. A. Catlow and 2012, 12, 756-763.
    • J. M. Thomas, Chem. Phys. Lett., 1992, 188, 320-325. 71 N. Almora-Barrios and N. H. de Leeuw, CrystEngComm, 2010, 57 P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, 12, 960-967.
    • J. Wolff, M. Genest and A. T. Hagler, Proteins, 1988, 4, 31-47. 72 N. Almora-Barrios, K. F. Austen and N. H. de Leeuw, 58 T. G. Cooper and N. H. de Leeuw, Langmuir, 2004, 20, 3984- Langmuir, 2009, 25, 5018-5025.
    • 3994. 73 T. G. Cooper and N. H. de Leeuw, Surf. Sci., 2003, 531, 159- 59 T. G. Cooper and N. H. de Leeuw, Chem. Commun., 2002, 176.
    • 1502-1503. 74 J. L. Hazemann, A. Manceau, P. Sainctavit and C. Malgrange, 60 N. H. de Leeuw and S. C. Parker, Res. Chem. Intermed., 1999, Phys. Chem. Miner., 1992, 19, 25-38.
    • 25, 195-211. 75 W. A. Deer, P. R. A. Howie and P. J. Zussman, An Introduction 61 S. C. Parker, N. H. de Leeuw and S. E. Redfern, Faraday to the Rock-Forming Minerals, Prentice Hall, 1992.
    • Discuss., 1999, 114, 381-393. 76 J. Hur and M. A. Schlautman, J. Environ. Qual., 2004, 33, 62 N. H. de Leeuw, F. M. Higgins and S. C. Parker, J. Phys. Chem. 1733-1742.
    • B, 1999, 103, 1270-1277. 77 T. G. Cooper and N. H. de Leeuw, J. Mater. Chem., 2004, 14, 63 N. H. de Leeuw, Z. Du, J. Li, S. Yip and T. Zhu, Nano Lett., 1927.
    • 2003, 3, 1347-1352. 78 N. H. de Leeuw and T. G. Cooper, Cryst. Growth Des., 2004, 4, 64 Z. Du and N. H. de Leeuw, Surf. Sci., 2004, 554, 193-210. 123-133. 65 B. Fubini, V. Bolis, M. Bailes and F. S. Stone, Solid State 79 N. H. de Leeuw, S. C. Parker and K. H. Rao, Langmuir, 1998, Ionics, 1989, 32-33, 258-272. 14, 5900-5906. 66 N. H. de Leeuw and S. C. Parker, J. Phys. Chem. B, 1998, 102, 80 X. Chen, H. Hu, J. Liu, H. Chen and Q. Wang, J. Cent. South 2914-2922. Univ., 2015, 22, 1626-1634. 67 P. Fenter, P. Geissbu¨hler, E. DiMasi, G. Srajer, L. B. Sorensen 81 B. A. Holm´en, M. I. Tejedor-Tejedor and W. H. Casey, and N. C. Sturchio, Geochim. Cosmochim. Acta, 2000, 64, Langmuir, 1997, 13, 2197-2206.
    • 1221-1228. 82 B. A. Holm´en and W. H. Casey, Geochim. Cosmochim. Acta, 1996, 60, 4403-4416.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article