Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mastio, EA; Cranton, WM; Thomas, CB (2001)
Publisher: American Institute of Physics
Languages: English
Types: Article
Thin polycrystalline electroluminescent thin films (TFEL) of ZnS:Mn (phosphor) and Y2O3 (insulator) were deposited individually or as multilayers onto Si (100) substrates. Their crystallinity and the luminescent efficiency of the phosphor films were investigated at varying thermal annealing temperatures. It is shown that the luminescent quality of the phosphor layer increases up to 700 °C, whereas the electroluminescence operating intensity of TFEL devices saturates at 500 °C. The structural analysis of the insulating and phosphor layers shows that they recrystallize at annealing temperatures of, respectively, 500 and 600 °C, and that their lattice misfit doubles at processing temperatures >=500 °C. Since TFEL devices should benefit from enhanced luminescence efficiency and crystallinity at high annealing temperatures, we suggest that the lack of improvement in device performance beyond 500 °C is due to interface alterations. According to previous works, we propose that the lattice misfit increase between the phosphor and dielectric thin films modifies the morphology of the phosphor–insulator boundary inducing a modification of the interface states density, and hence, modifying high field electron transport properties of TFEL devices.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 P. Rack and P. Holloway, Mater. Sci. Eng., R. 21, 171 ~1998!.
    • 2 T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nakata, and M. Yoshida, SID Dig. 74, 86 ~1974!.
    • 3 C. B. Thomas, R. Stevens, and W. M. Cranton, SID Dig. 96, 365 ~1996!.
    • 4 Y. Nakanishi and G. Shimaoka, J. Vac. Sci. Technol. A 5, 2092 ~1987!.
    • 5 S. Takata, T. Minami, and T. Miyata, Thin Solid Films 193Õ194, 481 ~1990!.
    • 6 H. Xian, P. Benalloul, C. Barthou, and J. Benoit, Thin Solid Films 248, 193 ~1994!.
    • 7 J. A. Ruffner, R. T. Tuenge, S. Sun, P. D. Grandon, and P. F. Hlava, Thin Solid Films 310, 123 ~1997!.
    • 8 H. Venghaus, D. Theis, H. Oppolzer, and S. Schild, J. Appl. Phys. 53, 4146 ~1982!.
    • 9 T. Matsuoka, J. Kuwata, M. Nishikawa, Y. Fujita, T. Tohida, and A. Abe, Jpn. J. Appl. Phys., Part 1 27, 592 ~1988!.
    • 10 H. Xian, P. Benalloul, C. Barthou, and J. Benoit, Jpn. J. Appl. Phys., Part 1 33, 5801 ~1994!.
    • 11 T. Matsuoka, M. Nishikawa, J. Kuwata, Y. Fujita, T. Tohida, and A. Abe, Jpn. J. Appl. Phys., Part 1 27, 1430 ~1988!.
    • 12 A. Aguilera, S. Bhaskaran, A. Garcia, D. Parker, W. Wu, J. C. McClure, and V. P. Singh, SID Dig. 94, 452 ~1994!.
    • 13 W. M. Cranton, R. Stevens, C. B. Thomas, A. H. Abdullah, and M. R. Craven, Proc. IEE Colloq. Mater. Displays 95, 7 ~1995!.
    • 14 W. M. Cranton, D. M. Spink, R. Stevens, and C. B. Thomas, Thin Solid Films 226, 156 ~1993!.
    • 15 E. A. Mastio, M. Robino, E. Fogarassy, M. R. Craven, W. M. Cranton, and C. B. Thomas, J. Appl. Phys. 86, 2562 ~1999!.
    • 16 A. F. Cattel and A. G. Cullis, Thin Solid Films 92, 211 ~1982!.
    • 17 K. Onisawa, M. Fuyama, K. Tamura, K. Taguchi, T. Nakayama, and Y. A. Ono, J. Appl. Phys. 68, 719 ~1990!.
    • 18 D. B. Cullity, Elements of X-Ray Diffraction ~Addison-Wesley, Reading, MA, 1978!.
    • 19 J. C. Jamieson and H. H. Demarest, J. Phys. Chem. Solids 41, 963 ~1980!.
    • 20 W. J. Troff and M. E. Thomas, in Handbook of Optical Constants of Solids II, edited by E. D. Palik ~Academic, New York, 1991!, p. 1079.
    • 21 H. Fukumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360 ~1989!.
    • 22 Y. Nakanishi, Y. Fukuda, Y. Hatanaka, and G. Shimaoka, Appl. Surf. Sci. 48Õ49, 297 ~1991!.
    • 23 E. A. Mastio, W. M. Cranton, C. B. Thomas, E. Fogarassy, and S. de Unamuno, Appl. Surf. Sci. 139, 35 ~1999!.
    • 24 E. A. Mastio, C. B. Thomas, W. M. Cranton, and E. Fogarassy, Appl. Surf. Sci. 157, 74 ~2000!.
    • 25 R. Scheps, J. Lumin. 42, 295 ~1988!.
    • 26 D. H. Smith, J. Lumin. 23, 209 ~1981!.
    • 27 H. Sasakura, H. Kobayashi, S. Tanaka, J. Mita, T. Tanaka, and H. Nakayama, J. Appl. Phys. 52, 6901 ~1981!.
    • 28 W. M. Cranton, PhD thesis, University of Bradford, 1995.
    • 29 E. A. Mastio, W. M. Cranton, and C. B. Thomas, J. Appl. Phys. 88, 1606 ~2000!.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article